Magnetic field effect on nonlinear vibration of nonlocal nanobeam embedded in nonlinear elastic foundation

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
B. E. Yapanmış, Necla Togun, S. Bağdatlı, Sevki Akkoca
{"title":"Magnetic field effect on nonlinear vibration of nonlocal nanobeam embedded in nonlinear elastic foundation","authors":"B. E. Yapanmış, Necla Togun, S. Bağdatlı, Sevki Akkoca","doi":"10.12989/SEM.2021.79.6.723","DOIUrl":null,"url":null,"abstract":"The history of modern humanity is developing towards making the technological equipment used as small as possible to facilitate human life. From this perspective, it is expected that electromechanical systems should be reduced to a size suitable for the requirements of the era. Therefore, dimensionless motion analysis of beams on the devices such as electronics, optics, etc., is of great significance. In this study, the linear and nonlinear vibration of nanobeams, which are frequently used in nanostructures, are focused on. Scenarios have been created about the vibration of nanobeams on the magnetic field and elastic foundation. In addition to these, the boundary conditions (BC) of nanobeams having clamped-clamped and simple-simple support situations are investigated. Nonlinear and linear natural frequencies of nanobeams are found, and the results are presented in tables and graphs. When the results are examined, decreases the vibration amplitudes with the increase of magnetic field and the elastic foundation coefficient. Higher frequency values and correction terms were obtained in clamped-clamped support conditions due to the structure's stiffening.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"723"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.6.723","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 5

Abstract

The history of modern humanity is developing towards making the technological equipment used as small as possible to facilitate human life. From this perspective, it is expected that electromechanical systems should be reduced to a size suitable for the requirements of the era. Therefore, dimensionless motion analysis of beams on the devices such as electronics, optics, etc., is of great significance. In this study, the linear and nonlinear vibration of nanobeams, which are frequently used in nanostructures, are focused on. Scenarios have been created about the vibration of nanobeams on the magnetic field and elastic foundation. In addition to these, the boundary conditions (BC) of nanobeams having clamped-clamped and simple-simple support situations are investigated. Nonlinear and linear natural frequencies of nanobeams are found, and the results are presented in tables and graphs. When the results are examined, decreases the vibration amplitudes with the increase of magnetic field and the elastic foundation coefficient. Higher frequency values and correction terms were obtained in clamped-clamped support conditions due to the structure's stiffening.
磁场对非线性弹性地基中非局部纳米梁非线性振动的影响
现代人类的历史正朝着使使用的技术设备尽可能小的方向发展,以方便人类的生活。从这个角度来看,预计机电系统应缩小到适合时代要求的尺寸。因此,对电子学、光学等器件上的光束进行无量纲运动分析具有重要意义。本文主要研究了纳米梁的线性和非线性振动问题。模拟了纳米梁在磁场和弹性地基上的振动情况。此外,还研究了夹固和简简支撑两种情况下纳米梁的边界条件。得到了纳米梁的非线性和线性固有频率,并将结果用图表表示出来。结果表明,振动幅值随磁场和弹性基础系数的增大而减小。由于结构的加劲,在夹紧-夹紧支护条件下,得到了更高的频率值和修正项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信