L. Yongjun, Xianzhao Zhang, Liu Kaiqi, Wenqiang Xu
{"title":"Analytical model for the basement wall horizontally supported by flexible floor diaphragms","authors":"L. Yongjun, Xianzhao Zhang, Liu Kaiqi, Wenqiang Xu","doi":"10.12989/SEM.2021.79.5.601","DOIUrl":null,"url":null,"abstract":"Subterranean floors are treated as the rigid lateral support in the current practice for the basement wall design. The structural performance of the basement wall will be influenced by the floor openings, which are inevitable to satisfy building functional requirements. An analytical model for the basement wall being presented is able to analyze the effect of such opening quantitatively. The magnitude of the horizontal support stiffness is determined based on deformation analysis of the diaphragm opening area. Idealized models of the basement wall are continuous beams with various degrees of indeterminacy. The force method is used to deduce the functions for internal forces acting towards the basement wall. The proposed analytical model is verified with results derived by finite element analyses through consideration of various factors, including various numbers of stories, combinations of beam-slab sections, and percentages of floor opening dimensions. The maximum deviations on critical design sections for all prototype basement structures are less than 15.99%. Comparisons with conventional rigid support models are also performed, providing an estimation of the effect of the opening on the mechanical behavior of the basement wall.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"601"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.5.601","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Subterranean floors are treated as the rigid lateral support in the current practice for the basement wall design. The structural performance of the basement wall will be influenced by the floor openings, which are inevitable to satisfy building functional requirements. An analytical model for the basement wall being presented is able to analyze the effect of such opening quantitatively. The magnitude of the horizontal support stiffness is determined based on deformation analysis of the diaphragm opening area. Idealized models of the basement wall are continuous beams with various degrees of indeterminacy. The force method is used to deduce the functions for internal forces acting towards the basement wall. The proposed analytical model is verified with results derived by finite element analyses through consideration of various factors, including various numbers of stories, combinations of beam-slab sections, and percentages of floor opening dimensions. The maximum deviations on critical design sections for all prototype basement structures are less than 15.99%. Comparisons with conventional rigid support models are also performed, providing an estimation of the effect of the opening on the mechanical behavior of the basement wall.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.