Numerical simulation on the crack initiation and propagation of coal with combined defects

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
Huayong Lv, Zhanbo Cheng, Yaqing Dong, Jing Zhang, Y. Ma
{"title":"Numerical simulation on the crack initiation and propagation of coal with combined defects","authors":"Huayong Lv, Zhanbo Cheng, Yaqing Dong, Jing Zhang, Y. Ma","doi":"10.12989/SEM.2021.79.2.237","DOIUrl":null,"url":null,"abstract":"There is normally the occurrence of pre-existing cracks and holes in coal mass to influence its mechanical behaviours. And the crack initiation and propagation around the tip of pre-existing cracks can be observed to induce the overall failure of coal mass finally. In this study, two groups of hole with the radius of 10 mm connecting one crack with length and width of 20 mm and 1 mm, respectively, were pre-existed in sample to explore the influence of crack angle (from 0 to 90o) on the unconfined compressive strength (UCS), crack initiation and propagation, and failure modes of coal mass with combined faults by using RFPA2D. The results showed that the stress-strain curves of specimen with double-hole-crack exhibit multiple stress drop compared to that of intact coal sample, especially in the post-peak stage. Moreover, UCS decreased firstly with the crack angle increasing to 30o and then increased until the crack angle reaching to 75o following by decreasing with the continuous increase of crack angle to 90o. In addition, the failure mode of double-hole-crack specimen with the crack angle of 0-30o can be regards as the dominated tensile failure combined with shear failure, which was consist with the failure pattern of intact specimen. On the other hand, the failure mode of double-hole-crack specimen with the crack angle of 45-90o is the dominated shear failure combined with tensile failure. Meanwhile, the distribution characteristics of acoustic emission energy can be used to better reflect the deformation and failure process of coal mass with combined defects.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.2.237","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 7

Abstract

There is normally the occurrence of pre-existing cracks and holes in coal mass to influence its mechanical behaviours. And the crack initiation and propagation around the tip of pre-existing cracks can be observed to induce the overall failure of coal mass finally. In this study, two groups of hole with the radius of 10 mm connecting one crack with length and width of 20 mm and 1 mm, respectively, were pre-existed in sample to explore the influence of crack angle (from 0 to 90o) on the unconfined compressive strength (UCS), crack initiation and propagation, and failure modes of coal mass with combined faults by using RFPA2D. The results showed that the stress-strain curves of specimen with double-hole-crack exhibit multiple stress drop compared to that of intact coal sample, especially in the post-peak stage. Moreover, UCS decreased firstly with the crack angle increasing to 30o and then increased until the crack angle reaching to 75o following by decreasing with the continuous increase of crack angle to 90o. In addition, the failure mode of double-hole-crack specimen with the crack angle of 0-30o can be regards as the dominated tensile failure combined with shear failure, which was consist with the failure pattern of intact specimen. On the other hand, the failure mode of double-hole-crack specimen with the crack angle of 45-90o is the dominated shear failure combined with tensile failure. Meanwhile, the distribution characteristics of acoustic emission energy can be used to better reflect the deformation and failure process of coal mass with combined defects.
含复合缺陷煤裂纹萌生与扩展的数值模拟
煤体中通常存在预先存在的裂隙和孔洞,从而影响其力学行为。观察到裂纹在裂隙尖端处的萌生和扩展,最终导致煤体整体破坏。本研究在试样中预先存在两组半径为10 mm的孔洞,分别连接一条长度为20 mm、宽度为1 mm的裂缝,利用RFPA2D研究裂隙角度(0 ~ 90°)对含组合断层煤体无侧限抗压强度(UCS)、裂缝起裂扩展及破坏模式的影响。结果表明:与完整煤样相比,双孔裂纹试样的应力-应变曲线表现出多次应力降,尤其是在峰后阶段;随着裂纹角度的增加,单轴抗压强度先减小后增大,直至裂纹角度为75°,随着裂纹角度的持续增大至90°,单轴抗压强度逐渐减小。双孔裂纹试件在0 ~ 300角范围内的破坏模式可视为以拉伸破坏为主,剪切破坏为主,与完整试件的破坏模式一致。另一方面,裂隙角度为45 ~ 90°的双孔裂纹试样的破坏模式为剪切破坏为主,拉伸破坏为主。同时,利用声发射能量的分布特征可以更好地反映含组合缺陷煤体的变形破坏过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信