Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
X. Tu, Y. Wu, Zhengliang Li, Zhisong Wang
{"title":"Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator","authors":"X. Tu, Y. Wu, Zhengliang Li, Zhisong Wang","doi":"10.12989/SEM.2021.78.1.087","DOIUrl":null,"url":null,"abstract":"Long span cross-rope suspension structure is an innovative structural system evolved from typical Cross-Rope Suspension (CRS) guyed tower, a type of supporting system with short span suspension cable supporting overhead power transmission lines. In mountainous areas, the span length of suspension cable was designed to be extended to hundreds or over one thousand meters, which is applicable for crossing deep valleys. Vortex Induced Vibration (VIV) of overhead power transmission lines was considered to be one of the major factors of its fatigue and service life. In this paper, VIV and its controlling by Stockbridge damper for long span CRS was discussed. Firstly, energy balance method and finite element method for assessing VIV of CRS were presented. An approach of establishing FE model of long span CRS structure with dampers was introduced. The effect of Stockbridge damper for overall vibration of CRS was compared in both theoretical and numerical approaches. Results indicated that vibration characteristics of conductor in long span CRS compared with traditional tower-line system. Secondly, analysis on long span CRS including Stockbridge damper showed additional dampers installed were essential for controlling maximum dynamic bending stresses of conductors at both ends. Moreover, factors, including configuration and mass of Stockbridge damper, span length of suspension cable and conductor and number of spans of conductor, were assessed for further discussion on VIV controlling of long span CRS.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.78.1.087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

Long span cross-rope suspension structure is an innovative structural system evolved from typical Cross-Rope Suspension (CRS) guyed tower, a type of supporting system with short span suspension cable supporting overhead power transmission lines. In mountainous areas, the span length of suspension cable was designed to be extended to hundreds or over one thousand meters, which is applicable for crossing deep valleys. Vortex Induced Vibration (VIV) of overhead power transmission lines was considered to be one of the major factors of its fatigue and service life. In this paper, VIV and its controlling by Stockbridge damper for long span CRS was discussed. Firstly, energy balance method and finite element method for assessing VIV of CRS were presented. An approach of establishing FE model of long span CRS structure with dampers was introduced. The effect of Stockbridge damper for overall vibration of CRS was compared in both theoretical and numerical approaches. Results indicated that vibration characteristics of conductor in long span CRS compared with traditional tower-line system. Secondly, analysis on long span CRS including Stockbridge damper showed additional dampers installed were essential for controlling maximum dynamic bending stresses of conductors at both ends. Moreover, factors, including configuration and mass of Stockbridge damper, span length of suspension cable and conductor and number of spans of conductor, were assessed for further discussion on VIV controlling of long span CRS.
大跨度张力绝缘子跨绳悬挂输电线路涡激振动及其控制
大跨度跨绳悬吊结构是由典型的跨绳悬吊(CRS)杆塔演变而来的一种创新结构体系,是一种用短跨度悬索支撑架空输电线路的支撑体系。在山区,悬索的跨长设计可延伸至数百米或1000米以上,适用于穿越深谷。涡旋诱发振动是影响架空输电线路疲劳和使用寿命的主要因素之一。本文讨论了大跨度CRS的涡激振动及斯托克布里奇阻尼器控制问题。首先,提出了能量平衡法和有限元法评估CRS的涡激振动;介绍了一种建立带阻尼器的大跨度CRS结构有限元模型的方法。从理论和数值两方面比较了斯托克布里奇阻尼器对CRS整体振动的影响。研究结果表明,与传统的塔线系统相比,大跨度CRS中导线的振动特性。其次,对包括斯托克布里奇阻尼器在内的大跨度CRS进行了分析,结果表明,为了控制导线两端的最大动弯曲应力,必须在两端加装阻尼器。此外,还对斯托克桥阻尼器的结构和质量、悬索和导体的跨度长度以及导体的跨度数等因素进行了评估,为大跨度CRS的涡激振动控制进行了进一步的探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信