Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
H. Mortezaie, R. Zamanian
{"title":"Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD","authors":"H. Mortezaie, R. Zamanian","doi":"10.12989/SEM.2021.77.6.721","DOIUrl":null,"url":null,"abstract":"The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a highrise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"721-734"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.77.6.721","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a highrise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.
考虑土-结构相互作用的非线性混凝土结构抗震控制
不考虑土体作用的结构抗震分析会破坏结构的功能目标,从而影响结构设计和控制阶段的所有预期目的。在本研究中,同时使用OpenSees和MATLAB软件,建立了高层混凝土结构的三维有限元模型,采用基于性能的塑性设计方法进行设计,对调谐质量阻尼器(TMD)和主动质量阻尼器(AMD)的性能进行了测试和比较。此外,土与结构的非线性相互作用、结构的隆升、结构的非线性行为和结构的扭转等一些鲜为人知的问题也得到了越来越多的关注。为此,在22个远场加速度记录下对结构模型进行了时程分析。检查所有结构的地震反应,包括横向位移,加速度,层间漂移,塑性能损失,塑性铰链数量,层剪力和隆起。结果表明,TMD除控制横向位移和层间位移外,在控制其他结构响应方面优于AMD。由于一方面加入了非线性结构参数和土-结构相互作用,另一方面由于控制力的限制导致主动控制系统出现饱和现象,影响了主动控制系统的性能。此外,结构控制系统施加的控制力在结构中产生了不良的加速度和剪切力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信