{"title":"A reliability-based fragility assessment method for seismic pounding between nonlinear buildings","authors":"Pei Liu, Hai-xin Zhu, Peng-Peng Fan, W. Yang","doi":"10.12989/SEM.2021.77.1.019","DOIUrl":null,"url":null,"abstract":"Existing methods to estimate the probability of seismic pounding occurrence of adjacent buildings do not account for nonlinear behavior or only apply to simple lumped mass systems. The present study proposes an efficient method based on subset simulation for fragility and risk assessment of seismic pounding occurrence between nonlinear adjacent buildings neglecting pounding effects with application to finite element models. The proposed method is first applied to adjacent buildings modeled as elastoplastic systems with substantially different dynamic properties for different structural parameters. Seismic pounding fragility and risk of adjacent frame structures with different floor levels is then assessed, paying special attention to modeling the non-linear material behavior in finite element models. Difference in natural periods and impact location are identified to affect the pounding fragility simultaneously. The reliability levels of the minimum code-specified separation distances are also determined. In addition, the incremental dynamic analysis method is extended to assess seismic pounding fragility of the adjacent frame structures, resulting in higher fragility estimates for separation distances larger than the minimum code-specified ones in comparison with the proposed method.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"19-35"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.77.1.019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Existing methods to estimate the probability of seismic pounding occurrence of adjacent buildings do not account for nonlinear behavior or only apply to simple lumped mass systems. The present study proposes an efficient method based on subset simulation for fragility and risk assessment of seismic pounding occurrence between nonlinear adjacent buildings neglecting pounding effects with application to finite element models. The proposed method is first applied to adjacent buildings modeled as elastoplastic systems with substantially different dynamic properties for different structural parameters. Seismic pounding fragility and risk of adjacent frame structures with different floor levels is then assessed, paying special attention to modeling the non-linear material behavior in finite element models. Difference in natural periods and impact location are identified to affect the pounding fragility simultaneously. The reliability levels of the minimum code-specified separation distances are also determined. In addition, the incremental dynamic analysis method is extended to assess seismic pounding fragility of the adjacent frame structures, resulting in higher fragility estimates for separation distances larger than the minimum code-specified ones in comparison with the proposed method.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.