Brundaban Sahoo, K. Mehar, Bamadev Sahoo, N. Sharma, S. Panda
{"title":"Thermal frequency analysis of FG sandwich structure under variable temperature loading","authors":"Brundaban Sahoo, K. Mehar, Bamadev Sahoo, N. Sharma, S. Panda","doi":"10.12989/SEM.2021.77.1.057","DOIUrl":null,"url":null,"abstract":"The thermal eigenvalue responses of the graded sandwich shell structure are evaluated numerically under the variable thermal loadings considering the temperature-dependent properties. The polynomial type rule-based sandwich panel model is derived using higher-order type kinematics considering the shear deformation in the framework of the equivalent single-layer theory. The frequency values are computed through an own home-made computer code (MATLAB environment) prepared using the finite element type higher-order formulation. The sandwich face-sheets and the metal core are discretized via isoparametric quadrilateral Lagrangian element. The model convergence is checked by solving the similar type published numerical examples in the open domain and extended for the comparison of natural frequencies to have the final confirmation of the model accuracy. Also, the influence of each variable structural parameter, i.e. the curvature ratios, core-face thickness ratios, end-support conditions, the power-law indices and sandwich types (symmetrical and unsymmetrical) on the thermal frequencies of FG sandwich curved shell panel model. The solutions are helping to bring out the necessary influence of one or more parameters on the frequencies. The effects of individual and the combined parameters as well as the temperature profiles (uniform, linear and nonlinear) are examined through several numerical examples, which affect the structural strength/stiffness values. The present study may help in designing the future graded structures which are under the influence of the variable temperature loading.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"57-74"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.77.1.057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 11
Abstract
The thermal eigenvalue responses of the graded sandwich shell structure are evaluated numerically under the variable thermal loadings considering the temperature-dependent properties. The polynomial type rule-based sandwich panel model is derived using higher-order type kinematics considering the shear deformation in the framework of the equivalent single-layer theory. The frequency values are computed through an own home-made computer code (MATLAB environment) prepared using the finite element type higher-order formulation. The sandwich face-sheets and the metal core are discretized via isoparametric quadrilateral Lagrangian element. The model convergence is checked by solving the similar type published numerical examples in the open domain and extended for the comparison of natural frequencies to have the final confirmation of the model accuracy. Also, the influence of each variable structural parameter, i.e. the curvature ratios, core-face thickness ratios, end-support conditions, the power-law indices and sandwich types (symmetrical and unsymmetrical) on the thermal frequencies of FG sandwich curved shell panel model. The solutions are helping to bring out the necessary influence of one or more parameters on the frequencies. The effects of individual and the combined parameters as well as the temperature profiles (uniform, linear and nonlinear) are examined through several numerical examples, which affect the structural strength/stiffness values. The present study may help in designing the future graded structures which are under the influence of the variable temperature loading.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.