{"title":"Construction Technology of Abnormal Electricity Identification Feature Library","authors":"武强 余","doi":"10.12677/jee.2023.113015","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce the method of constructing abnormal electricity identification feature library. Firstly, the typical power load characteristics are designed, including peak value, valley value, average value, power factor and other indicators, and stored in the database. Then, the characteristics of abnormal power load are analyzed, such as mutation, periodicity, duration, etc., and corresponding algorithms are developed to process and extract them. Finally, the obtained features are stored in the abnormal power load feature library. In the realization of the abnormal electricity identification feature library, the machine learning technology is used to","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"96 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12677/jee.2023.113015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to introduce the method of constructing abnormal electricity identification feature library. Firstly, the typical power load characteristics are designed, including peak value, valley value, average value, power factor and other indicators, and stored in the database. Then, the characteristics of abnormal power load are analyzed, such as mutation, periodicity, duration, etc., and corresponding algorithms are developed to process and extract them. Finally, the obtained features are stored in the abnormal power load feature library. In the realization of the abnormal electricity identification feature library, the machine learning technology is used to
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications