Exponential decay of correlations for surface semiflows with an expanding direction

Q2 Mathematics
I. Obayashi
{"title":"Exponential decay of correlations for surface semiflows with an expanding direction","authors":"I. Obayashi","doi":"10.1215/KJM/1256219166","DOIUrl":null,"url":null,"abstract":"Dolgopyat [4] showed that a class of Axiom A flows has exponential decay of correlations for smooth observables, and Baladi-Vallée [2] gave a nice interpretation of it on suspension semiflows of one-dimensional expanding countable Markov maps. Avila-Gouëzel-Yoccoz [1] extends the result of Baladi-Vallée to higher dimensional systems. In this paper we show that a class of non-Markov semiflows also has exponential decay of correlations. We prove that such exponential decay can be shown on an open dense condition for the suspensions of piecewise expanding maps.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"427-440"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/KJM/1256219166","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1256219166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Dolgopyat [4] showed that a class of Axiom A flows has exponential decay of correlations for smooth observables, and Baladi-Vallée [2] gave a nice interpretation of it on suspension semiflows of one-dimensional expanding countable Markov maps. Avila-Gouëzel-Yoccoz [1] extends the result of Baladi-Vallée to higher dimensional systems. In this paper we show that a class of non-Markov semiflows also has exponential decay of correlations. We prove that such exponential decay can be shown on an open dense condition for the suspensions of piecewise expanding maps.
膨胀方向表面半流相关系数的指数衰减
Dolgopyat[4]证明了一类公理a流对于光滑可观测值具有指数衰减的相关性,baladi - vall[2]在一维展开可数马尔可夫映射的悬浮半流上给出了很好的解释。Avila-Gouëzel-Yoccoz[1]将baladi - vall的结果扩展到更高维度的系统。在本文中,我们证明了一类非马尔可夫半流也具有相关的指数衰减。对于分段展开映射的悬架,我们证明了这种指数衰减可以在开密条件下表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信