Flips and variation of moduli scheme of sheaves on a surface

Q2 Mathematics
Kimiko Yamada
{"title":"Flips and variation of moduli scheme of sheaves on a surface","authors":"Kimiko Yamada","doi":"10.1215/KJM/1256219165","DOIUrl":null,"url":null,"abstract":"Let $H$ be an ample line bundle on a non-singular projective surface $X$, and $M(H)$ the coarse moduli scheme of rank-two $H$-semistable sheaves with fixed Chern classes on $X$. We show that if $H$ changes and passes through walls to get closer to $K_X$, then $M(H)$ undergoes natural flips with respect to canonical divisors. When $X$ is minimal and its Kodaira dimension is positive, this sequence of flips terminates in $M(H_X)$; $H_X$ is an ample line bundle lying so closely to $K_X$ that the canonical divisor of $M(H_X)$ is nef. Remark that so-called Thaddeus-type flips somewhat differ from flips with respect to canonical divisors.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"419-425"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1256219165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Let $H$ be an ample line bundle on a non-singular projective surface $X$, and $M(H)$ the coarse moduli scheme of rank-two $H$-semistable sheaves with fixed Chern classes on $X$. We show that if $H$ changes and passes through walls to get closer to $K_X$, then $M(H)$ undergoes natural flips with respect to canonical divisors. When $X$ is minimal and its Kodaira dimension is positive, this sequence of flips terminates in $M(H_X)$; $H_X$ is an ample line bundle lying so closely to $K_X$ that the canonical divisor of $M(H_X)$ is nef. Remark that so-called Thaddeus-type flips somewhat differ from flips with respect to canonical divisors.
表面上轮轴模格式的翻转和变化
设$H$为非奇异投影曲面$X$上的一个充足的线束,$M(H)$为$X$上的两个$H$-具有固定Chern类的半稳定轴的粗模格式。我们证明了如果$H$改变并穿过墙壁接近$K_X$,则$M(H)$相对正则因子发生自然翻转。当$X$是最小的并且它的Kodaira维数是正的,这个翻转序列终止于$M(H_X)$;$H_X$是一个非常接近$K_X$的行束,因此$M(H_X)$的规范除数是nef。注意,所谓的thaddeus型翻转在正则除数方面与翻转有些不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信