Gabor multipliers for weighted Banach spaces on locally compact abelian groups

Q2 Mathematics
S. S. Pandey
{"title":"Gabor multipliers for weighted Banach spaces on locally compact abelian groups","authors":"S. S. Pandey","doi":"10.1215/KJM/1256219154","DOIUrl":null,"url":null,"abstract":"We use a projective groups representation ρ of the unimodular group G× ˆ G on L 2 ( G ) to define Gabor wavelet transform of a function f with respect to a window function g , where G is a locally compact abelian group and ˆ G its dual group. Using these transforms, we define a weighted Banach H 1 , ρ w ( G ) and its antidual space H 1 ∼ , ρ w ( G ) , w being a moderate weight function on G × ˆ G . These spaces reduce to the well known Feichtinger algebra S 0 ( G ) and Banach space of Feichtinger distribution S (cid:2) 0 ( G ) respectively for w ≡ 1. We obtain an atomic decomposition of H 1 , ρ w ( G ) and study some properties of Gabor multipliers on the spaces L 2 ( G ) , H 1 , ρ w ( G ) and H 1 ∼ , ρ w ( G ). Finally, we prove a theorem on the compactness of Gabor multiplier operators on L 2 ( G ) and H 1 , ρ w ( G ), which reduces to an earlier result of Feichtinger [Fei 02, Theorem 5.15 (iv)] for w = 1 and G = R d .","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"235-254"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1256219154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We use a projective groups representation ρ of the unimodular group G× ˆ G on L 2 ( G ) to define Gabor wavelet transform of a function f with respect to a window function g , where G is a locally compact abelian group and ˆ G its dual group. Using these transforms, we define a weighted Banach H 1 , ρ w ( G ) and its antidual space H 1 ∼ , ρ w ( G ) , w being a moderate weight function on G × ˆ G . These spaces reduce to the well known Feichtinger algebra S 0 ( G ) and Banach space of Feichtinger distribution S (cid:2) 0 ( G ) respectively for w ≡ 1. We obtain an atomic decomposition of H 1 , ρ w ( G ) and study some properties of Gabor multipliers on the spaces L 2 ( G ) , H 1 , ρ w ( G ) and H 1 ∼ , ρ w ( G ). Finally, we prove a theorem on the compactness of Gabor multiplier operators on L 2 ( G ) and H 1 , ρ w ( G ), which reduces to an earlier result of Feichtinger [Fei 02, Theorem 5.15 (iv)] for w = 1 and G = R d .
局部紧阿贝尔群上加权Banach空间的Gabor乘子
利用l2 (G)上的单模群gx * G的一个射影群表示ρ定义了函数f关于窗函数G的Gabor小波变换,其中G是一个局部紧阿贝尔群,G是它的对偶群。利用这些变换,我们定义了一个加权的Banach h1, ρ w (G)和它的反对偶空间h1 ~, ρ w (G),其中w是G × G上的一个中等权函数。当w≡1时,这些空间分别化为众所周知的Feichtinger代数s0 (G)和Feichtinger分布S (cid:2) 0 (G)的Banach空间。我们得到了h1, ρ w (G)的原子分解,并研究了l2 (G), h1, ρ w (G)和h1 ~, ρ w (G)空间上Gabor乘子的一些性质。最后,我们证明了l2 (G)和h1, ρ w (G)上的Gabor乘子算子的紧性定理,它简化为Feichtinger [Fei 02,定理5.15 (iv)]对于w = 1和G = R d的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信