Mod 2 cohomology of 2-compact groups of low rank

Q2 Mathematics
S. Kaji
{"title":"Mod 2 cohomology of 2-compact groups of low rank","authors":"S. Kaji","doi":"10.1215/kjm/1250281055","DOIUrl":null,"url":null,"abstract":"A bstract . We determine the mod 2 cohomology over the Steenrod algebra A 2 of the classifying spaces of the free loop groups LG for compact groups G = Spin (7), Spin (8), Spin (9), and F 4 . Then, we show that they are isomorphic as algebras over A 2 to the mod 2 cohomology of the corresponding Chevalley groups of type G ( q ), where q is an odd prime power. In a similar manner, we compute the cohomology of the free loop space over BDI (4) and show that it is isomorphic to that of BSol ( q ) as algebras over A 2 . This note is a revised version of [8].","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"47 1","pages":"441-450"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/kjm/1250281055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

A bstract . We determine the mod 2 cohomology over the Steenrod algebra A 2 of the classifying spaces of the free loop groups LG for compact groups G = Spin (7), Spin (8), Spin (9), and F 4 . Then, we show that they are isomorphic as algebras over A 2 to the mod 2 cohomology of the corresponding Chevalley groups of type G ( q ), where q is an odd prime power. In a similar manner, we compute the cohomology of the free loop space over BDI (4) and show that it is isomorphic to that of BSol ( q ) as algebras over A 2 . This note is a revised version of [8].
低秩2紧群的模2上同调
摘要。我们确定了紧群G = Spin (7), Spin (8), Spin (9), f4的自由环群的分类空间LG在Steenrod代数a2上的模2上同调。然后,我们证明了它们作为代数在a2上的同构到对应的G (q)型Chevalley群的模2上同调,其中q是奇素数幂。以类似的方式,我们计算了BDI(4)上的自由循环空间的上同调,并证明了它与BSol (q)在a2上的代数同构。本说明是[8]的修订版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信