Locally Stein domains over holomorphically convex manifolds

Q2 Mathematics
V. Vâjâitu
{"title":"Locally Stein domains over holomorphically convex manifolds","authors":"V. Vâjâitu","doi":"10.1215/KJM/1250280978","DOIUrl":null,"url":null,"abstract":"Let π : Y −→ X be a domain over a complex space X . Assume that π is locally Stein. Then we show that Y is Stein provided that X is Stein and either there is an open set W containing X sing with π − 1 ( W ) Stein or π is locally hyperconvex over any point in X sing . In the same vein we show that, if X is q -complete and X has isolated singularities, then Y results q -complete.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250280978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Let π : Y −→ X be a domain over a complex space X . Assume that π is locally Stein. Then we show that Y is Stein provided that X is Stein and either there is an open set W containing X sing with π − 1 ( W ) Stein or π is locally hyperconvex over any point in X sing . In the same vein we show that, if X is q -complete and X has isolated singularities, then Y results q -complete.
全纯凸流形上的局部Stein域
设π: Y−→X是复空间X上的定义域。假设π是局部斯坦因。然后,我们证明了Y是Stein,条件是X是Stein,并且存在一个包含X sing与π−1 (W) Stein的开集W,或者π在X sing中任意点上是局部超凸的。同样地,我们证明,如果X是q完备的,并且X有孤立的奇点,那么Y是q完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信