{"title":"Some infinite elements in the Adams spectral sequence for the sphere spectrum","authors":"X. Liu","doi":"10.1215/KJM/1250271386","DOIUrl":null,"url":null,"abstract":"In the stable homotopy group πpnq+(p+1)q−1(V (1)) of the SmithToda spectrum V (1), the author constructed an essential element n for n ≥ 3 at the prime greater than three. Let β∗ s ∈ [V (1), S]spq+(s−1)q−2 denote the dual of the generator β′′ s ∈ πs(p+1)q(V (1)), which defines the β-element βs. In this paper, the author shows that the composite α1β1ξs ∈ πpnq+(s+1)pq+sq−6(S) for 1 < s < p − 2 is non-trivial, where ξs = β ∗ s−1 n ∈ πpnq+spq+(s−1)q−3(S) and q = 2(p − 1). As a corollary, ξs, α1ξs and β1ξs are also non-trivial for 1 < s < p − 2.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"48 1","pages":"617-629"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250271386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8
Abstract
In the stable homotopy group πpnq+(p+1)q−1(V (1)) of the SmithToda spectrum V (1), the author constructed an essential element n for n ≥ 3 at the prime greater than three. Let β∗ s ∈ [V (1), S]spq+(s−1)q−2 denote the dual of the generator β′′ s ∈ πs(p+1)q(V (1)), which defines the β-element βs. In this paper, the author shows that the composite α1β1ξs ∈ πpnq+(s+1)pq+sq−6(S) for 1 < s < p − 2 is non-trivial, where ξs = β ∗ s−1 n ∈ πpnq+spq+(s−1)q−3(S) and q = 2(p − 1). As a corollary, ξs, α1ξs and β1ξs are also non-trivial for 1 < s < p − 2.
期刊介绍:
Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.