Some infinite elements in the Adams spectral sequence for the sphere spectrum

Q2 Mathematics
X. Liu
{"title":"Some infinite elements in the Adams spectral sequence for the sphere spectrum","authors":"X. Liu","doi":"10.1215/KJM/1250271386","DOIUrl":null,"url":null,"abstract":"In the stable homotopy group πpnq+(p+1)q−1(V (1)) of the SmithToda spectrum V (1), the author constructed an essential element n for n ≥ 3 at the prime greater than three. Let β∗ s ∈ [V (1), S]spq+(s−1)q−2 denote the dual of the generator β′′ s ∈ πs(p+1)q(V (1)), which defines the β-element βs. In this paper, the author shows that the composite α1β1ξs ∈ πpnq+(s+1)pq+sq−6(S) for 1 < s < p − 2 is non-trivial, where ξs = β ∗ s−1 n ∈ πpnq+spq+(s−1)q−3(S) and q = 2(p − 1). As a corollary, ξs, α1ξs and β1ξs are also non-trivial for 1 < s < p − 2.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"48 1","pages":"617-629"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250271386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

In the stable homotopy group πpnq+(p+1)q−1(V (1)) of the SmithToda spectrum V (1), the author constructed an essential element n for n ≥ 3 at the prime greater than three. Let β∗ s ∈ [V (1), S]spq+(s−1)q−2 denote the dual of the generator β′′ s ∈ πs(p+1)q(V (1)), which defines the β-element βs. In this paper, the author shows that the composite α1β1ξs ∈ πpnq+(s+1)pq+sq−6(S) for 1 < s < p − 2 is non-trivial, where ξs = β ∗ s−1 n ∈ πpnq+spq+(s−1)q−3(S) and q = 2(p − 1). As a corollary, ξs, α1ξs and β1ξs are also non-trivial for 1 < s < p − 2.
球谱的Adams谱序列中的一些无限元
在SmithToda谱V(1)的稳定同伦群πpnq+(p+1)q−1(V(1))中,在n≥3的素数处构造了一个本质元n。设β * s∈[V (1), s]spq+(s−1)q−2表示生成子β ' s∈πs(p+1)q(V(1))的对偶,它定义了β-元素βs。本文证明了复合α1β1ξ∈πpnq+(s+1)pq+sq−6(s)对于1 < s < p−2是非平凡的,其中ξ = β∗s−1 n∈πpnq+spq+(s−1)q−3(s)和q = 2(p−1)。作为推论,对于1 < s < p−2,ξ、α1ξ和β1ξ也是非平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信