{"title":"On parabolic geometry of type PGL(d,C)/P","authors":"I. Biswas","doi":"10.1215/KJM/1250271316","DOIUrl":null,"url":null,"abstract":"Let P be the maximal parabolic subgroup of PGL( d, C ) defined by invertible matrices ( a ij ) di,j =1 with a dj = 0 for all j ∈ [1 , d − 1]. Take a holomorphic parabolic geometry ( M, E P , ω ) of type PGL( d, C ) /P . Assume that M is a complex projective manifold. We prove the following: If there is a nonconstant holomorphic map f : CP 1 −→ M , then M is biholomorphic to the projective space CP d − 1 .","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"48 1","pages":"747-755"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250271316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let P be the maximal parabolic subgroup of PGL( d, C ) defined by invertible matrices ( a ij ) di,j =1 with a dj = 0 for all j ∈ [1 , d − 1]. Take a holomorphic parabolic geometry ( M, E P , ω ) of type PGL( d, C ) /P . Assume that M is a complex projective manifold. We prove the following: If there is a nonconstant holomorphic map f : CP 1 −→ M , then M is biholomorphic to the projective space CP d − 1 .
期刊介绍:
Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.