{"title":"Central Limit Theorem for Linear Stochastic Evolutions","authors":"M. Nakashima","doi":"10.1215/KJM/1248983037","DOIUrl":null,"url":null,"abstract":"We consider a Markov chain with values in [0,$\\infty$)$^{\\mathbb{z}d}$. The Markov chain includes some interesting examples such as the oriented site percolation, the directed polymers in random environment, and a time discretization of the binary contact process. We prove a central limit theorem for �the spatial distribution of population� when $d\\geq 3$ and a certain square-integrability condition for the total population is satisfied. This extends a result known for the directed polymers in random environment to a large class of models.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"201-224"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1248983037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11
Abstract
We consider a Markov chain with values in [0,$\infty$)$^{\mathbb{z}d}$. The Markov chain includes some interesting examples such as the oriented site percolation, the directed polymers in random environment, and a time discretization of the binary contact process. We prove a central limit theorem for �the spatial distribution of population� when $d\geq 3$ and a certain square-integrability condition for the total population is satisfied. This extends a result known for the directed polymers in random environment to a large class of models.
期刊介绍:
Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.