{"title":"The Fano surface of the Klein cubic threefold","authors":"X. Roulleau","doi":"10.1215/KJM/1248983032","DOIUrl":null,"url":null,"abstract":"We prove that the Klein cubic threefold $F$ is the only smooth cubic threefold which has an automorphism of order $11$. We compute the period lattice of the intermediate Jacobian of $F$ and study its Fano surface $S$. We compute also the set of fibrations of $S$ onto a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index $2$ sub-group of the Neron-Severi group and we obtain a set of generators of this group. The Neron-Severi group of $S$ has rank $25=h^{1,1}$ and discriminant $11^{10}$.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"113-129"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1248983032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19
Abstract
We prove that the Klein cubic threefold $F$ is the only smooth cubic threefold which has an automorphism of order $11$. We compute the period lattice of the intermediate Jacobian of $F$ and study its Fano surface $S$. We compute also the set of fibrations of $S$ onto a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index $2$ sub-group of the Neron-Severi group and we obtain a set of generators of this group. The Neron-Severi group of $S$ has rank $25=h^{1,1}$ and discriminant $11^{10}$.
期刊介绍:
Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.