Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff

Q2 Mathematics
Radjesvarane Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, Tong Yang
{"title":"Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff","authors":"Radjesvarane Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, Tong Yang","doi":"10.1215/21562261-1625154","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the spatially homogeneous Boltzmann equation without angular cutoff. We prove that every $L^1$ weak solution to the Cauchy problem with finite moments of all order acquires the $C^\\infty$ regularity in the velocity variable for the positive time.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"52 1","pages":"433-463"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-1625154","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/21562261-1625154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 49

Abstract

In this paper, we consider the spatially homogeneous Boltzmann equation without angular cutoff. We prove that every $L^1$ weak solution to the Cauchy problem with finite moments of all order acquires the $C^\infty$ regularity in the velocity variable for the positive time.
无角截断空间齐次玻尔兹曼方程弱解的平滑效应
本文考虑无角截断的空间齐次玻尔兹曼方程。证明了所有阶有限矩Cauchy问题的$L^1$弱解在正时间下速度变量具有$C^\infty$正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信