Equivariant K-theory of Hilbert schemes via shuffle algebra

Q2 Mathematics
B. Feigin, A. Tsymbaliuk
{"title":"Equivariant K-theory of Hilbert schemes via shuffle algebra","authors":"B. Feigin, A. Tsymbaliuk","doi":"10.1215/21562261-1424875","DOIUrl":null,"url":null,"abstract":"In this paper we construct the action of Ding-Iohara and shuffle algebras in the sum of localized equivariant K-groups of Hilbert schemes of points on C^2. We show that commutative elements K_i of shuffle algebra act through vertex operators over positive part {h_i}_{i>0} of the Heisenberg algebra in these K-groups. Hence we get the action of Heisenberg algebra itself. Finally, we normalize the basis of the structure sheaves of fixed points in such a way that it corresponds to the basis of Macdonald polynomials in the Fock space k[h_1,h_2,...].","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"51 1","pages":"831-854"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-1424875","citationCount":"162","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/21562261-1424875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 162

Abstract

In this paper we construct the action of Ding-Iohara and shuffle algebras in the sum of localized equivariant K-groups of Hilbert schemes of points on C^2. We show that commutative elements K_i of shuffle algebra act through vertex operators over positive part {h_i}_{i>0} of the Heisenberg algebra in these K-groups. Hence we get the action of Heisenberg algebra itself. Finally, we normalize the basis of the structure sheaves of fixed points in such a way that it corresponds to the basis of Macdonald polynomials in the Fock space k[h_1,h_2,...].
通过洗牌代数的Hilbert格式的等变k理论
本文构造了C^2上点的Hilbert格式的定域等变k群和中的Ding-Iohara代数和shuffle代数的作用。我们证明了shuffle代数的交换元K_i通过顶点算子作用于这些k -群中的Heisenberg代数的正部分{h_i}_{i>0}。因此我们得到了海森堡代数本身的作用。最后,我们将不动点结构束的基归一化,使其对应于Fock空间k[h_1,h_2,…]中的Macdonald多项式的基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信