GnRH Pulse Frequency Control of Fshb Gene Expression Is Mediated via ERK1/2 Regulation of ICER.

Q Biochemistry, Genetics and Molecular Biology
Iain R. Thompson, N. Ciccone, Qiongjie Zhou, Shuyun Xu, Ahmad Khogeer, R. Carroll, U. Kaiser
{"title":"GnRH Pulse Frequency Control of Fshb Gene Expression Is Mediated via ERK1/2 Regulation of ICER.","authors":"Iain R. Thompson, N. Ciccone, Qiongjie Zhou, Shuyun Xu, Ahmad Khogeer, R. Carroll, U. Kaiser","doi":"10.1210/me.2015-1222","DOIUrl":null,"url":null,"abstract":"The pulsatile release of GnRH regulates the synthesis and secretion of pituitary FSH and LH. Two transcription factors, cAMP-response element-binding protein (CREB) and inducible cAMP early repressor (ICER), have been implicated in the regulation of rat Fshb gene expression. We previously showed that the protein kinase A pathway mediates GnRH-stimulated CREB activation. We hypothesized that CREB and ICER are activated by distinct signaling pathways in response to pulsatile GnRH to modulate Fshb gene expression, which is preferentially stimulated at low vs high pulse frequencies. In the LβT2 gonadotrope-derived cell line, GnRH stimulation increased ICER mRNA and protein. Blockade of ERK activation with mitogen-activated protein kinase kinase I/II (MEKI/II) inhibitors significantly attenuated GnRH induction of ICER mRNA and protein, whereas protein kinase C, calcium/calmodulin-dependent protein kinase II, and protein kinase A inhibitors had minimal effects. GnRH also stimulated ICER in primary mouse pituitary cultures, attenuated similarly by a MEKI/II inhibitor. In a perifusion paradigm, MEKI/II inhibition in LβT2 cells stimulated with pulsatile GnRH abrogated ICER induction at high GnRH pulse frequencies, with minimal effect at low frequencies. MEKI/II inhibition reduced GnRH stimulation of Fshb at high and low pulse frequencies, suggesting that the ERK pathway has additional effects on GnRH regulation of Fshb, beyond those mediated by ICER. Indeed, induction of the activating protein 1 proteins, cFos and cJun, positive modulators of Fshb transcription, by pulsatile GnRH was also abrogated by inhibition of the MEK/ERK signaling pathway. Collectively, these studies indicate that the signaling pathways mediating GnRH activation of CREB and ICER are distinct, contributing to the decoding of the pulsatile GnRH to regulate FSHβ expression.","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 3 1","pages":"348-60"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1222","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/me.2015-1222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18

Abstract

The pulsatile release of GnRH regulates the synthesis and secretion of pituitary FSH and LH. Two transcription factors, cAMP-response element-binding protein (CREB) and inducible cAMP early repressor (ICER), have been implicated in the regulation of rat Fshb gene expression. We previously showed that the protein kinase A pathway mediates GnRH-stimulated CREB activation. We hypothesized that CREB and ICER are activated by distinct signaling pathways in response to pulsatile GnRH to modulate Fshb gene expression, which is preferentially stimulated at low vs high pulse frequencies. In the LβT2 gonadotrope-derived cell line, GnRH stimulation increased ICER mRNA and protein. Blockade of ERK activation with mitogen-activated protein kinase kinase I/II (MEKI/II) inhibitors significantly attenuated GnRH induction of ICER mRNA and protein, whereas protein kinase C, calcium/calmodulin-dependent protein kinase II, and protein kinase A inhibitors had minimal effects. GnRH also stimulated ICER in primary mouse pituitary cultures, attenuated similarly by a MEKI/II inhibitor. In a perifusion paradigm, MEKI/II inhibition in LβT2 cells stimulated with pulsatile GnRH abrogated ICER induction at high GnRH pulse frequencies, with minimal effect at low frequencies. MEKI/II inhibition reduced GnRH stimulation of Fshb at high and low pulse frequencies, suggesting that the ERK pathway has additional effects on GnRH regulation of Fshb, beyond those mediated by ICER. Indeed, induction of the activating protein 1 proteins, cFos and cJun, positive modulators of Fshb transcription, by pulsatile GnRH was also abrogated by inhibition of the MEK/ERK signaling pathway. Collectively, these studies indicate that the signaling pathways mediating GnRH activation of CREB and ICER are distinct, contributing to the decoding of the pulsatile GnRH to regulate FSHβ expression.
通过ERK1/2调控ICER介导GnRH脉冲频率调控Fshb基因表达
GnRH的脉动性释放调节垂体FSH和LH的合成和分泌。两个转录因子,cAMP-response element-binding protein (CREB)和诱导性cAMP早期抑制因子(ICER),参与了大鼠Fshb基因表达的调控。我们之前的研究表明,蛋白激酶A途径介导gnrh刺激的CREB激活。我们假设CREB和ICER被不同的信号通路激活,以响应脉冲GnRH来调节Fshb基因表达,在低脉冲频率和高脉冲频率下优先刺激Fshb基因表达。在l - β t2促性腺激素来源的细胞系中,GnRH刺激增加了ICER mRNA和蛋白。用丝裂原激活的蛋白激酶I/II (MEKI/II)抑制剂阻断ERK激活可显著减弱GnRH对ICER mRNA和蛋白的诱导,而蛋白激酶C、钙/钙调素依赖性蛋白激酶II和蛋白激酶A抑制剂的作用最小。GnRH也刺激了原代小鼠垂体培养物中的ICER, MEKI/II抑制剂也类似地减弱了ICER。在灌注模式中,脉冲GnRH刺激LβT2细胞的MEKI/II抑制在高GnRH脉冲频率下消除了ICER诱导,在低频率下影响最小。MEKI/II抑制降低了高、低脉冲频率下GnRH对Fshb的刺激,提示ERK通路除了ICER介导外,还对GnRH对Fshb的调节有额外的作用。事实上,脉冲GnRH对Fshb转录的正调节因子激活蛋白1、cFos和cJun的诱导作用也被MEK/ERK信号通路的抑制所取消。总的来说,这些研究表明介导GnRH激活CREB和ICER的信号通路是不同的,有助于解码脉动GnRH以调节FSHβ表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular endocrinology
Molecular endocrinology 医学-内分泌学与代谢
CiteScore
3.49
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Molecular Endocrinology provides a forum for papers devoted to describing molecular mechanisms by which hormones and related compounds regulate function. It has quickly achieved a reputation as a high visibility journal with very rapid communication of cutting edge science: the average turnaround time is 28 days from manuscript receipt to first decision, and accepted manuscripts are published online within a week through Rapid Electronic Publication. In the 2008 Journal Citation Report, Molecular Endocrinology is ranked 16th out of 93 journals in the Endocrinology and Metabolism category, with an Impact Factor of 5.389.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信