Dual-input anomaly detection method based on deep reinforcement learning

IF 5.7 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yuxiang Kang, Guo Chen, Hao Wang, Wenping Pan, Xunkai Wei
{"title":"Dual-input anomaly detection method based on deep reinforcement learning","authors":"Yuxiang Kang, Guo Chen, Hao Wang, Wenping Pan, Xunkai Wei","doi":"10.1177/14759217231188002","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of low accuracy of unsupervised learning anomaly detection algorithm, a dual-input anomaly detection method based on deep reinforcement learning was proposed. The proposed model mainly consists of a feature extractor and anomaly detector. Based on the deep reinforcement learning framework, the feature extractor uses a dual-input deep neural network to form the current value network and the target value network, which are used to extract the low-dimensional feature vectors. Based on the 3 σ principle, the reward function of reinforcement learning is designed to reward and punish the output results of the model during training. The model was trained only with the normal data, and the extracted feature vector of the normal class was used as the input of the anomaly detector to complete the learning of the detector. During the test, the input anomaly detection was realized based on the dual-input convolutional neural network, and the anomaly detector was completed by learning. To illustrate the generality and generalization performance of the proposed method, four sets of image data and two sets of rolling bearing fault data in different fields were verified respectively. At the same time, the proposed method is applied to the fault detection of a real aero-engine rolling bearing.The results show that the proposed model has high anomaly detection accuracy, which is superior to the current optimal method.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231188002","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of low accuracy of unsupervised learning anomaly detection algorithm, a dual-input anomaly detection method based on deep reinforcement learning was proposed. The proposed model mainly consists of a feature extractor and anomaly detector. Based on the deep reinforcement learning framework, the feature extractor uses a dual-input deep neural network to form the current value network and the target value network, which are used to extract the low-dimensional feature vectors. Based on the 3 σ principle, the reward function of reinforcement learning is designed to reward and punish the output results of the model during training. The model was trained only with the normal data, and the extracted feature vector of the normal class was used as the input of the anomaly detector to complete the learning of the detector. During the test, the input anomaly detection was realized based on the dual-input convolutional neural network, and the anomaly detector was completed by learning. To illustrate the generality and generalization performance of the proposed method, four sets of image data and two sets of rolling bearing fault data in different fields were verified respectively. At the same time, the proposed method is applied to the fault detection of a real aero-engine rolling bearing.The results show that the proposed model has high anomaly detection accuracy, which is superior to the current optimal method.
基于深度强化学习的双输入异常检测方法
针对无监督学习异常检测算法准确率低的问题,提出了一种基于深度强化学习的双输入异常检测方法。该模型主要由特征提取器和异常检测器组成。基于深度强化学习框架,特征提取器采用双输入深度神经网络形成当前值网络和目标值网络,分别用于提取低维特征向量。基于3 σ原理,设计了强化学习的奖励函数,在训练过程中对模型的输出结果进行奖励和惩罚。模型只使用正常数据进行训练,提取的正常类特征向量作为异常检测器的输入,完成异常检测器的学习。在测试过程中,基于双输入卷积神经网络实现输入异常检测,通过学习完成异常检测。为了说明所提方法的通用性和泛化性能,分别对4组图像数据和2组不同领域的滚动轴承故障数据进行了验证。同时,将该方法应用于实际航空发动机滚动轴承的故障检测。结果表明,该模型具有较高的异常检测精度,优于现有的最优方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.80
自引率
12.10%
发文量
181
审稿时长
4.8 months
期刊介绍: Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信