{"title":"Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency","authors":"Behnam Ebrahimi","doi":"10.1186/s13619-015-0024-9","DOIUrl":null,"url":null,"abstract":"<div><p>Induced pluripotent stem cells are powerful tools for disease modeling, drug screening, and cell transplantation therapies. These cells can be generated directly from somatic cells by ectopic expression of defined factors through a reprogramming process. However, pluripotent reprogramming is an inefficient process because of various defined and unidentified barriers. Recent studies dissecting the molecular mechanisms of reprogramming have methodically improved the quality, ease, and efficiency of reprogramming. Different strategies have been applied for enhancing reprogramming efficiency, including depletion/inhibition of barriers (p53, p21, p57, p16<sup>Ink4a</sup>/p19<sup>Arf</sup>, Mbd3, etc.), overexpression of enhancing genes (e.g., <em>FOXH1</em>, <em>C/EBP alpha</em>, <em>UTF1</em>, and <em>GLIS1</em>), and administration of certain cytokines and small molecules. The current review provides an in-depth overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency and strategies to enhance reprogramming efficiency. By incorporating the mechanistic insights from these recent findings, a combined method of inhibition of roadblocks and application of enhancing factors may yield the most reliable and effective approach in pluripotent reprogramming.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"4 1","pages":"Article 4:10"},"PeriodicalIF":4.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13619-015-0024-9","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2045976917300123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 78
Abstract
Induced pluripotent stem cells are powerful tools for disease modeling, drug screening, and cell transplantation therapies. These cells can be generated directly from somatic cells by ectopic expression of defined factors through a reprogramming process. However, pluripotent reprogramming is an inefficient process because of various defined and unidentified barriers. Recent studies dissecting the molecular mechanisms of reprogramming have methodically improved the quality, ease, and efficiency of reprogramming. Different strategies have been applied for enhancing reprogramming efficiency, including depletion/inhibition of barriers (p53, p21, p57, p16Ink4a/p19Arf, Mbd3, etc.), overexpression of enhancing genes (e.g., FOXH1, C/EBP alpha, UTF1, and GLIS1), and administration of certain cytokines and small molecules. The current review provides an in-depth overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency and strategies to enhance reprogramming efficiency. By incorporating the mechanistic insights from these recent findings, a combined method of inhibition of roadblocks and application of enhancing factors may yield the most reliable and effective approach in pluripotent reprogramming.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine