The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS- Strain of Escherichia coli

IF 1.2 Q2 Biochemistry, Genetics and Molecular Biology
Sofía García, N. Flores, R. de Anda, G. Hernández, G. Gosset, F. Bolivar, A. Escalante
{"title":"The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS- Strain of Escherichia coli","authors":"Sofía García, N. Flores, R. de Anda, G. Hernández, G. Gosset, F. Bolivar, A. Escalante","doi":"10.1159/000450611","DOIUrl":null,"url":null,"abstract":"The culture of engineered Escherichia coli for shikimic acid (SA) production results in the synthesis of quinic acid (QA) and dehydroshikimic acid (DHS), reducing SA yield and impairing downstream processes. The synthesis of QA by quinate/shikimate dehydrogenase (YdiB, ydiB) has been previously proposed; however, the precise role for this enzyme in the production of QA in engineered strains of E. coli for SA production remains unclear. We report the effect of the inactivation or the overexpression of ydiB in E. coli strain PB12.SA22 on SA, QA, and DHS production in batch fermentor cultures. The results showed that the inactivation of ydiB resulted in a 75% decrease in the molar yield of QA and a 6.17% reduction in the yield of QA (mol/mol) relative to SA with respect to the parental strain. The overexpression of ydiB caused a 500% increase in the molar yield of QA and resulted in a 152% increase in QA (mol/mol) relative to SA, with a sharp decrease in SA production. Production of SA, QA, and DHS in parental and derivative ydiB strains suggests that the synthesis of QA results from the reduction of 3-dehydroquinate by YdiB before its conversion to DHS.","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000450611","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000450611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8

Abstract

The culture of engineered Escherichia coli for shikimic acid (SA) production results in the synthesis of quinic acid (QA) and dehydroshikimic acid (DHS), reducing SA yield and impairing downstream processes. The synthesis of QA by quinate/shikimate dehydrogenase (YdiB, ydiB) has been previously proposed; however, the precise role for this enzyme in the production of QA in engineered strains of E. coli for SA production remains unclear. We report the effect of the inactivation or the overexpression of ydiB in E. coli strain PB12.SA22 on SA, QA, and DHS production in batch fermentor cultures. The results showed that the inactivation of ydiB resulted in a 75% decrease in the molar yield of QA and a 6.17% reduction in the yield of QA (mol/mol) relative to SA with respect to the parental strain. The overexpression of ydiB caused a 500% increase in the molar yield of QA and resulted in a 152% increase in QA (mol/mol) relative to SA, with a sharp decrease in SA production. Production of SA, QA, and DHS in parental and derivative ydiB strains suggests that the synthesis of QA results from the reduction of 3-dehydroquinate by YdiB before its conversion to DHS.
编码奎宁酸/莽草酸脱氢酶的ydiB基因在大肠杆菌PTS-菌株生产奎宁酸、脱氢莽草酸和莽草酸中的作用
为生产莽草酸(SA)而培养的工程大肠杆菌导致奎宁酸(QA)和脱氢莽草酸(DHS)的合成,降低了SA的产量并损害了下游工艺。以前有人提出用quinate/shikimate脱氢酶(YdiB, YdiB)合成QA;然而,该酶在大肠杆菌工程菌株生产QA中的确切作用尚不清楚。我们报道了ydiB在大肠杆菌菌株PB12中失活或过表达的影响。SA22在SA, QA和DHS生产的批量发酵罐培养。结果表明,与亲本菌株相比,ydiB失活导致QA的摩尔产率降低75%,QA的产率(mol/mol)降低6.17%。ydiB的过表达使QA的摩尔产率提高了500%,QA (mol/mol)相对于SA增加了152%,而SA的产量则急剧下降。在亲本和衍生菌株ydiB中产生SA、QA和DHS表明,QA的合成是由ydiB在转化为DHS之前还原3-脱氢quinate引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Microbiology and Biotechnology
Journal of Molecular Microbiology and Biotechnology 生物-生物工程与应用微生物
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信