Chromatic Schultz and Gutman Polynomials of Jahangir Graphs J

IF 1.2 Q2 MATHEMATICS, APPLIED
Ramy S. Shaheen, Suhail Mahfud, Qays Alhawat
{"title":"Chromatic Schultz and Gutman Polynomials of Jahangir Graphs <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n ","authors":"Ramy S. Shaheen, Suhail Mahfud, Qays Alhawat","doi":"10.1155/2023/4891083","DOIUrl":null,"url":null,"abstract":"Topological polynomial and indices based on the distance between the vertices of a connected graph are widely used in the chemistry to establish relation between the structure and the properties of molecules. In a similar way, chromatic versions of certain topological indices and the related polynomial have also been discussed in the recent literature. In this paper, we present the chromatic Schultz and Gutman polynomials and the expanded form of the Hosoya polynomial and chromatic Schultz and Gutman polynomials, and then we derive these polynomials for special cases of Jahangir graphs.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4891083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Topological polynomial and indices based on the distance between the vertices of a connected graph are widely used in the chemistry to establish relation between the structure and the properties of molecules. In a similar way, chromatic versions of certain topological indices and the related polynomial have also been discussed in the recent literature. In this paper, we present the chromatic Schultz and Gutman polynomials and the expanded form of the Hosoya polynomial and chromatic Schultz and Gutman polynomials, and then we derive these polynomials for special cases of Jahangir graphs.
Jahangir图的色Schultz和Gutman多项式
拓扑多项式和基于连通图顶点间距离的指标在化学中被广泛应用于建立分子结构与性质之间的关系。以类似的方式,在最近的文献中也讨论了某些拓扑指标的色版本和相关的多项式。本文给出了色Schultz和Gutman多项式以及Hosoya多项式和色Schultz和Gutman多项式的展开形式,并推导了Jahangir图的特殊情况下的这些多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信