Signal Integrity Analysis in Carbon Nanotube Based Through-Silicon Via

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Majumder, Archana Kumari, B. Kaushik, S. Manhas
{"title":"Signal Integrity Analysis in Carbon Nanotube Based Through-Silicon Via","authors":"M. Majumder, Archana Kumari, B. Kaushik, S. Manhas","doi":"10.1155/2014/524107","DOIUrl":null,"url":null,"abstract":"Development of a reliable 3D integrated system is largely dependent on the choice of filler materials used in through-silicon vias (TSVs). This research paper presents carbon nanotube (CNT) bundles as prospective filler materials for TSVs and provides an analysis of signal integrity for different single- (SWCNT), double- (DWCNT), and multi-walled CNT (MWCNT) bundle based TSVs. Depending on the physical configuration of a pair of TSVs, an equivalent electrical model is employed to analyze the in-phase and out-phase delays. It is observed that, using an MWCNT bundle (with number of shells = 10), the overall in-phase delays are reduced by 96.86%, 92.33%, 78.35%, and 32.72% compared to the bundled SWCNT, DWCNT, 4-shell MWCNT, and 8-shell MWCNT, respectively; similarly, the overall reduction in out-phase delay is 85.89%, 73.38%, 45.92%, and 12.56%, respectively.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":"2014 1","pages":"1-7"},"PeriodicalIF":1.3000,"publicationDate":"2014-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/524107","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/524107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

Abstract

Development of a reliable 3D integrated system is largely dependent on the choice of filler materials used in through-silicon vias (TSVs). This research paper presents carbon nanotube (CNT) bundles as prospective filler materials for TSVs and provides an analysis of signal integrity for different single- (SWCNT), double- (DWCNT), and multi-walled CNT (MWCNT) bundle based TSVs. Depending on the physical configuration of a pair of TSVs, an equivalent electrical model is employed to analyze the in-phase and out-phase delays. It is observed that, using an MWCNT bundle (with number of shells = 10), the overall in-phase delays are reduced by 96.86%, 92.33%, 78.35%, and 32.72% compared to the bundled SWCNT, DWCNT, 4-shell MWCNT, and 8-shell MWCNT, respectively; similarly, the overall reduction in out-phase delay is 85.89%, 73.38%, 45.92%, and 12.56%, respectively.
基于碳纳米管的硅通孔信号完整性分析
可靠的3D集成系统的开发在很大程度上取决于硅通孔(tsv)中填充材料的选择。本文提出了碳纳米管束作为tsv的潜在填充材料,并分析了不同单壁(SWCNT)、双壁(DWCNT)和多壁碳纳米管束(MWCNT) tsv的信号完整性。根据tsv对的物理结构,采用等效电学模型分析了tsv对的相内和相外延迟。研究发现,与捆绑的SWCNT、DWCNT、4壳MWCNT和8壳MWCNT相比,使用MWCNT束(壳数= 10),总体同相延迟分别减少了96.86%、92.33%、78.35%和32.72%;同样,整体的外相延迟降低率分别为85.89%、73.38%、45.92%和12.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信