Peishan Dai, Hanwei Sheng, Jianmei Zhang, Ling Li, Jing Wu, Min Fan
{"title":"Retinal Fundus Image Enhancement Using the Normalized Convolution and Noise Removing","authors":"Peishan Dai, Hanwei Sheng, Jianmei Zhang, Ling Li, Jing Wu, Min Fan","doi":"10.1155/2016/5075612","DOIUrl":null,"url":null,"abstract":"Retinal fundus image plays an important role in the diagnosis of retinal related diseases. The detailed information of the retinal fundus image such as small vessels, microaneurysms, and exudates may be in low contrast, and retinal image enhancement usually gives help to analyze diseases related to retinal fundus image. Current image enhancement methods may lead to artificial boundaries, abrupt changes in color levels, and the loss of image detail. In order to avoid these side effects, a new retinal fundus image enhancement method is proposed. First, the original retinal fundus image was processed by the normalized convolution algorithm with a domain transform to obtain an image with the basic information of the background. Then, the image with the basic information of the background was fused with the original retinal fundus image to obtain an enhanced fundus image. Lastly, the fused image was denoised by a two-stage denoising method including the fourth order PDEs and the relaxed median filter. The retinal image databases, including the DRIVE database, the STARE database, and the DIARETDB1 database, were used to evaluate image enhancement effects. The results show that the method can enhance the retinal fundus image prominently. And, different from some other fundus image enhancement methods, the proposed method can directly enhance color images.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2016 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/5075612","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/5075612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 54
Abstract
Retinal fundus image plays an important role in the diagnosis of retinal related diseases. The detailed information of the retinal fundus image such as small vessels, microaneurysms, and exudates may be in low contrast, and retinal image enhancement usually gives help to analyze diseases related to retinal fundus image. Current image enhancement methods may lead to artificial boundaries, abrupt changes in color levels, and the loss of image detail. In order to avoid these side effects, a new retinal fundus image enhancement method is proposed. First, the original retinal fundus image was processed by the normalized convolution algorithm with a domain transform to obtain an image with the basic information of the background. Then, the image with the basic information of the background was fused with the original retinal fundus image to obtain an enhanced fundus image. Lastly, the fused image was denoised by a two-stage denoising method including the fourth order PDEs and the relaxed median filter. The retinal image databases, including the DRIVE database, the STARE database, and the DIARETDB1 database, were used to evaluate image enhancement effects. The results show that the method can enhance the retinal fundus image prominently. And, different from some other fundus image enhancement methods, the proposed method can directly enhance color images.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics