{"title":"Fuzzy logic control of active and reactive power for a grid-connected photovoltaic system using a three-level neutral-point-clamped inverter","authors":"Ghrissi Tahri, Z. A. Foitih, A. Tahri","doi":"10.11591/IJPEDS.V12.I1.PP453-462","DOIUrl":null,"url":null,"abstract":"This paper aims to present a fuzzy logic control (FLC) of active and reactive power for a grid-connected photovoltaic system. The PV system is connected to the grid utility using a three-level neutral point clamped inverter (3L-NPC) and LCL filter. Two control strategies, fuzzy logic control, and conventional PI control are applied. The design of the two control strategies is based on calculating the instantaneous active and reactive power from the measured grid voltages and currents to allow the system to have a dynamic robustness performance against a sudden change in reactive power and satisfactory active power tracking under rapid solar radiation changes. The control strategies can transfer the total active power generated by the PV array to the grid utility with high power quality and a unity power factor. The simulation results using the Matlab-Simulink environment show that the FLC strategy has a better dynamic performance with less settling time, and overshoot compared to the conventional PI control.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP453-462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 5
Abstract
This paper aims to present a fuzzy logic control (FLC) of active and reactive power for a grid-connected photovoltaic system. The PV system is connected to the grid utility using a three-level neutral point clamped inverter (3L-NPC) and LCL filter. Two control strategies, fuzzy logic control, and conventional PI control are applied. The design of the two control strategies is based on calculating the instantaneous active and reactive power from the measured grid voltages and currents to allow the system to have a dynamic robustness performance against a sudden change in reactive power and satisfactory active power tracking under rapid solar radiation changes. The control strategies can transfer the total active power generated by the PV array to the grid utility with high power quality and a unity power factor. The simulation results using the Matlab-Simulink environment show that the FLC strategy has a better dynamic performance with less settling time, and overshoot compared to the conventional PI control.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.