Stability of the Stochastic Reaction-Diffusion Neural Network with Time-Varying Delays and p-Laplacian

IF 1.2 Q2 MATHEMATICS, APPLIED
Pan Qingfei, Zhang Zi-fang, Huang Jingchang
{"title":"Stability of the Stochastic Reaction-Diffusion Neural Network with Time-Varying Delays and p-Laplacian","authors":"Pan Qingfei, Zhang Zi-fang, Huang Jingchang","doi":"10.1155/2012/405939","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to discuss moment exponential stability for a stochastic reaction-diffusion neural network with time-varying delays and p-Laplacian. Using the Ito formula, a delay differential inequality and the characteristics of the neural network, the algebraic conditions for the moment exponential stability of the nonconstant equilibrium solution are derived. An example is also given for illustration.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2012-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/405939","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/405939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

The main aim of this paper is to discuss moment exponential stability for a stochastic reaction-diffusion neural network with time-varying delays and p-Laplacian. Using the Ito formula, a delay differential inequality and the characteristics of the neural network, the algebraic conditions for the moment exponential stability of the nonconstant equilibrium solution are derived. An example is also given for illustration.
时变时滞随机反应-扩散神经网络的稳定性和p- laplace
本文的主要目的是讨论具有时变时滞和p-拉普拉斯算子的随机反应-扩散神经网络的矩指数稳定性。利用伊藤公式、一个时滞微分不等式和神经网络的特性,导出了非常平衡解矩指数稳定的代数条件。还给出了一个例子来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信