Bifurcation Analysis of a Coupled Kuramoto-Sivashinsky- and Ginzburg-Landau-Type Model

IF 1.2 Q2 MATHEMATICS, APPLIED
Lei Shi
{"title":"Bifurcation Analysis of a Coupled Kuramoto-Sivashinsky- and Ginzburg-Landau-Type Model","authors":"Lei Shi","doi":"10.1155/2013/926512","DOIUrl":null,"url":null,"abstract":"We study the bifurcation and stability of trivial stationary solution of coupled Kuramoto-Sivashinsky- and Ginzburg-Landau-type equations (KS-GL) on a bounded domain with Neumann's boundary conditions. The asymptotic behavior of the trivial solution of the equations is considered. With the length of the domain regarded as bifurcation parameter, branches of nontrivial solutions are shown by using the perturbation method. Moreover, local behavior of these branches is studied, and the stability of the bifurcated solutions is analyzed as well.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/926512","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/926512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the bifurcation and stability of trivial stationary solution of coupled Kuramoto-Sivashinsky- and Ginzburg-Landau-type equations (KS-GL) on a bounded domain with Neumann's boundary conditions. The asymptotic behavior of the trivial solution of the equations is considered. With the length of the domain regarded as bifurcation parameter, branches of nontrivial solutions are shown by using the perturbation method. Moreover, local behavior of these branches is studied, and the stability of the bifurcated solutions is analyzed as well.
Kuramoto-Sivashinsky-和ginzburg - landau -耦合模型的分岔分析
研究了具有Neumann边界条件的有界区域上Kuramoto-Sivashinsky-和ginzburg - landau型耦合方程平凡平稳解的分岔和稳定性。考虑了方程平凡解的渐近性质。以区域长度为分岔参数,用摄动法给出了非平凡解的分支。此外,还研究了这些分支的局部行为,并分析了分支解的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信