Synthesis and Surface Properties of Silica Spheres with Core Shell Structure by One Convenient Method

4区 材料科学 Q2 Engineering
D. Das, K. Parida, B. Mishra
{"title":"Synthesis and Surface Properties of Silica Spheres with Core Shell Structure by One Convenient Method","authors":"D. Das, K. Parida, B. Mishra","doi":"10.1155/2009/328508","DOIUrl":null,"url":null,"abstract":"Earlier, we have published a paper on the preparation of silica sphere using propanol as cosurfactant. We report here a highly cost-effective method of preparation of mesoporous silica spheres with core shell structure using sodium silicate as silica precursor, cetyltrimethyl ammonium bromide (CTAB) as surfactant, and methanol as cosurfactant. Thus after removal of the template by dissolutions or/and activation at higher temperature, mesoporous silica spheres with core shell structure were obtained. The products prepared with methanol to CTAB molar ratio 8.5 : 1 were confirmed to give best results. All the spherical products have very large surface area (∼589–1044 m2/g), pore volume (∼0.98–1.41 cm3/g), and ordered pore structure.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"2009 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/328508","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2009/328508","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Earlier, we have published a paper on the preparation of silica sphere using propanol as cosurfactant. We report here a highly cost-effective method of preparation of mesoporous silica spheres with core shell structure using sodium silicate as silica precursor, cetyltrimethyl ammonium bromide (CTAB) as surfactant, and methanol as cosurfactant. Thus after removal of the template by dissolutions or/and activation at higher temperature, mesoporous silica spheres with core shell structure were obtained. The products prepared with methanol to CTAB molar ratio 8.5 : 1 were confirmed to give best results. All the spherical products have very large surface area (∼589–1044 m2/g), pore volume (∼0.98–1.41 cm3/g), and ordered pore structure.
一种简易法合成核壳结构二氧化硅微球及其表面性能
在此之前,我们发表了一篇以丙醇为共表面活性剂制备二氧化硅球的论文。本文报道了一种以硅酸钠为硅前驱体,十六烷基三甲基溴化铵(CTAB)为表面活性剂,甲醇为助表面活性剂制备具有核壳结构的介孔硅球的高性价比方法。因此,通过溶解或/和高温活化去除模板后,得到了具有核壳结构的介孔二氧化硅球。以甲醇与CTAB摩尔比8.5:1制备的产物效果最佳。所有的球形产物都具有非常大的表面积(~ 589-1044 m2/g),孔隙体积(~ 0.98-1.41 cm3/g)和有序的孔隙结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Materials Science and Engineering
Advances in Materials Science and Engineering Materials Science-General Materials Science
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to: -Chemistry and fundamental properties of matter -Material synthesis, fabrication, manufacture, and processing -Magnetic, electrical, thermal, and optical properties of materials -Strength, durability, and mechanical behaviour of materials -Consideration of materials in structural design, modelling, and engineering -Green and renewable materials, and consideration of materials’ life cycles -Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信