SILICA-COPPER OXIDE COMPOSITE THIN FILMS AS SOLAR SELECTIVE COATINGS PREPARED BY DIPPING SOL GEL

4区 材料科学 Q2 Engineering
C. Barrera, V. Mendez, L. Ortega
{"title":"SILICA-COPPER OXIDE COMPOSITE THIN FILMS AS SOLAR SELECTIVE COATINGS PREPARED BY DIPPING SOL GEL","authors":"C. Barrera, V. Mendez, L. Ortega","doi":"10.1155/2008/190920","DOIUrl":null,"url":null,"abstract":"Silica-copper oxide (silica-CuO) composite thin films were prepared by a dipping sol-gel route using ethanolic solutions comprised TEOS and a copper-propionate complex. Sols with different TEOS/Cu-propionate (Si/Cu) molar ratios were prepared and applied on stainless steel substrates using dipping process. During the annealing process, copper-propionate complexes developed into particulate polycrystalline CuO dispersed in a partially crystallized silica matrix, as indicated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The gel thermal analysis revealed that the prepared material might be stable up to 400∘C. The silica-CuO/stainless steel system was characterized as a selective absorber surface and its solar selectivity parameters, absorptance (𝛼), and emittance (𝜀) were evaluated from UV-NIR reflectance data. The solar parameters of such a system were mostly affected by the thickness and phase composition of the SiO2-CuO film. Interestingly, the best solar parameters (𝛼 = 0.92 and 𝜀 = 0.2) were associated to the thinnest films, which comprised a CuO-Cu2O mixture immersed in the silica matrix, as indicated by XPS.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/190920","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2008/190920","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 26

Abstract

Silica-copper oxide (silica-CuO) composite thin films were prepared by a dipping sol-gel route using ethanolic solutions comprised TEOS and a copper-propionate complex. Sols with different TEOS/Cu-propionate (Si/Cu) molar ratios were prepared and applied on stainless steel substrates using dipping process. During the annealing process, copper-propionate complexes developed into particulate polycrystalline CuO dispersed in a partially crystallized silica matrix, as indicated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The gel thermal analysis revealed that the prepared material might be stable up to 400∘C. The silica-CuO/stainless steel system was characterized as a selective absorber surface and its solar selectivity parameters, absorptance (𝛼), and emittance (𝜀) were evaluated from UV-NIR reflectance data. The solar parameters of such a system were mostly affected by the thickness and phase composition of the SiO2-CuO film. Interestingly, the best solar parameters (𝛼 = 0.92 and 𝜀 = 0.2) were associated to the thinnest films, which comprised a CuO-Cu2O mixture immersed in the silica matrix, as indicated by XPS.
用溶胶-凝胶浸渍法制备二氧化硅-氧化铜复合薄膜作为太阳能选择性涂层
采用溶胶-凝胶浸渍法制备了二氧化硅-氧化铜(silica-CuO)复合薄膜。采用浸渍法制备了不同TEOS/Cu-丙酸(Si/Cu)摩尔比的溶胶,并将其涂在不锈钢基体上。x射线衍射(XRD)和x射线光电子能谱(XPS)分析表明,在退火过程中,丙酸铜配合物形成颗粒状多晶CuO,分散在部分结晶的二氧化硅基体中。凝胶热分析表明,所制备的材料在400°C下是稳定的。将二氧化硅- cuo /不锈钢体系表征为选择性吸收体表面,并通过紫外-近红外反射数据评估其太阳选择性参数、吸收率(ρ r)和发射率(ρ r)。该系统的太阳参数主要受SiO2-CuO膜的厚度和相组成的影响。有趣的是,XPS显示,最佳的太阳参数(ρ = 0.92, ρ = 0.2)与最薄的薄膜相关,该薄膜由浸入二氧化硅基体的CuO-Cu2O混合物组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Materials Science and Engineering
Advances in Materials Science and Engineering Materials Science-General Materials Science
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to: -Chemistry and fundamental properties of matter -Material synthesis, fabrication, manufacture, and processing -Magnetic, electrical, thermal, and optical properties of materials -Strength, durability, and mechanical behaviour of materials -Consideration of materials in structural design, modelling, and engineering -Green and renewable materials, and consideration of materials’ life cycles -Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信