F. Liebner, A. Potthast, T. Rosenau, E. Haimer, M. Wendland
{"title":"Ultralight-Weight Cellulose Aerogels from NBnMO-Stabilized Lyocell Dopes","authors":"F. Liebner, A. Potthast, T. Rosenau, E. Haimer, M. Wendland","doi":"10.1155/2007/73724","DOIUrl":null,"url":null,"abstract":"Cellulose aerogels are intriguing new materials produced by supercritical drying of regenerated cellulose obtained by solvent exchange of solid Lyocell moldings. From N-methylmorpholine-N-oxide solutions with cellulose contents between 1 and 12%, dimensionally stable cellulose bodies are produced, in which the solution structure of the cellulose is largely preserved and transferred into the solid state. The specific density and surface of the obtained aerogels range from 0.05 to 0.26 g/cm3 and from 172 to 284 m2/g, respectively, depending on the cellulose content of the Lyocell dopes and regeneration procedure. A reliable extraction and drying procedure using supercritical carbon dioxide, the advantageous use of NBnMO as stabilizer for the Lyocell dopes, and selected physical properties of the materials is communicated.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"2007 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2007/73724","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2007/73724","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 29
Abstract
Cellulose aerogels are intriguing new materials produced by supercritical drying of regenerated cellulose obtained by solvent exchange of solid Lyocell moldings. From N-methylmorpholine-N-oxide solutions with cellulose contents between 1 and 12%, dimensionally stable cellulose bodies are produced, in which the solution structure of the cellulose is largely preserved and transferred into the solid state. The specific density and surface of the obtained aerogels range from 0.05 to 0.26 g/cm3 and from 172 to 284 m2/g, respectively, depending on the cellulose content of the Lyocell dopes and regeneration procedure. A reliable extraction and drying procedure using supercritical carbon dioxide, the advantageous use of NBnMO as stabilizer for the Lyocell dopes, and selected physical properties of the materials is communicated.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)