{"title":"Genetic Algorithm Optimization for Determining Fuzzy Measures from Fuzzy Data","authors":"Chen Li, Gong Zeng-tai, Duan Gang","doi":"10.1155/2013/542153","DOIUrl":null,"url":null,"abstract":"Fuzzy measures and fuzzy integrals have been successfully used in many real applications. How to determine fuzzy measures is a very difficult problem in these applications. Though there have existed some methodologies for solving this problem, such as genetic algorithms, gradient descent algorithms, neural networks, and particle swarm algorithm, it is hard to say which one is more appropriate and more feasible. Each method has its advantages. Most of the existed works can only deal with the data consisting of classic numbers which may arise limitations in practical applications. It is not reasonable to assume that all data are real data before we elicit them from practical data. Sometimes, fuzzy data may exist, such as in pharmacological, financial and sociological applications. Thus, we make an attempt to determine a more generalized type of general fuzzy measures from fuzzy data by means of genetic algorithms and Choquet integrals. In this paper, we make the first effort to define the <path id=\"x1D70E\" d=\"M548 455q-32 -77 -74 -77q-37 0 -103 10l-3 -2q36 -30 48.5 -62t12.5 -80q0 -103 -75 -179.5t-175 -76.5q-70 0 -113 45t-43 128q0 115 83.5 200.5t209.5 85.5q31 0 77.5 -4t67.5 -4q36 0 62 30zM350 274q0 54 -17 86q-19 35 -57 35q-50 0 -90 -37.5t-59 -91.5t-19 -109\nq0 -61 24.5 -96.5t65.5 -35.5q51 0 87.5 46.5t50.5 100.5t14 102z\" /> <path id=\"x1D706\" d=\"M529 97q-70 -109 -136 -109q-41 0 -56 94q-23 144 -37 284q-38 -88 -99 -202.5t-93 -156.5q-26 -8 -76 -19l-9 21q71 78 145.5 193t124.5 232q-5 84 -15 128q-12 55 -29.5 75.5t-42.5 20.5q-21 0 -45 -13l-8 24q16 17 46 30t55 13q43 0 70 -46.5t40 -169.5\nq27 -249 51 -392q7 -46 23 -46q24 0 70 60z\" /> rules. Furthermore we define and characterize the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on rules. In addition, we design a special genetic algorithm to determine a type of general fuzzy measures from fuzzy data.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/542153","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/542153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
Fuzzy measures and fuzzy integrals have been successfully used in many real applications. How to determine fuzzy measures is a very difficult problem in these applications. Though there have existed some methodologies for solving this problem, such as genetic algorithms, gradient descent algorithms, neural networks, and particle swarm algorithm, it is hard to say which one is more appropriate and more feasible. Each method has its advantages. Most of the existed works can only deal with the data consisting of classic numbers which may arise limitations in practical applications. It is not reasonable to assume that all data are real data before we elicit them from practical data. Sometimes, fuzzy data may exist, such as in pharmacological, financial and sociological applications. Thus, we make an attempt to determine a more generalized type of general fuzzy measures from fuzzy data by means of genetic algorithms and Choquet integrals. In this paper, we make the first effort to define the rules. Furthermore we define and characterize the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on rules. In addition, we design a special genetic algorithm to determine a type of general fuzzy measures from fuzzy data.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.