Exact Stationary Solution Method for the Wadati-Konno-Ichikawa-Shimizu (WKIS) Equation

R. A. Gorder
{"title":"Exact Stationary Solution Method for the Wadati-Konno-Ichikawa-Shimizu (WKIS) Equation","authors":"R. A. Gorder","doi":"10.1143/PTP.128.993","DOIUrl":null,"url":null,"abstract":"We consider a method of obtaining exact implicit relations governing stationary solutions to the Wadati-Konno-Ichikawa-Shimizu (WKIS) equation. After a suitable transform, we put the WKIS equation into the form of a nonlinear ordinary differential equation. This equation has exact first and second integrals of motion. From this second integral, the exact equation governing the stationary solution to the WKIS equation is obtained. This relation may easily be inverted and plotted, to give the exact solution profiles. Furthermore, an exact formula for the period of oscillation in terms of the model parameters is obtained. Subject Index: 010, 030","PeriodicalId":49658,"journal":{"name":"Progress of Theoretical Physics","volume":"128 1","pages":"993-999"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1143/PTP.128.993","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTP.128.993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider a method of obtaining exact implicit relations governing stationary solutions to the Wadati-Konno-Ichikawa-Shimizu (WKIS) equation. After a suitable transform, we put the WKIS equation into the form of a nonlinear ordinary differential equation. This equation has exact first and second integrals of motion. From this second integral, the exact equation governing the stationary solution to the WKIS equation is obtained. This relation may easily be inverted and plotted, to give the exact solution profiles. Furthermore, an exact formula for the period of oscillation in terms of the model parameters is obtained. Subject Index: 010, 030
wadati - kono - ichiawa - shimizu (WKIS)方程的精确平稳解方法
本文研究了WKIS方程平稳解的精确隐式关系的求解方法。经过适当的变换,将WKIS方程转化为非线性常微分方程的形式。这个方程有运动的第一和第二积分。由这第二个积分,得到了控制WKIS方程平稳解的精确方程。这种关系可以很容易地颠倒和绘制,以给出精确的解的轮廓。此外,还得到了振动周期随模型参数变化的精确表达式。主题索引:010,030
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress of Theoretical Physics
Progress of Theoretical Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信