Separation of Chiral and Deconfinement Phase Transitions in Curved Space-Time

S. Sasagawa, Hidekazu Tanaka
{"title":"Separation of Chiral and Deconfinement Phase Transitions in Curved Space-Time","authors":"S. Sasagawa, Hidekazu Tanaka","doi":"10.1143/PTP.128.925","DOIUrl":null,"url":null,"abstract":"We calculated the chiral condensate and th ed ressed Polyakov loop in the space-time R × S 3 and R × H 3 . The chiral condensate is the order parameter for the chiral phase transition, whereas the dressed Polyakov loop is the order parameter for the deconfinement phase transition. When there is a current mass, critical points for the chiral and deconfinement phase transitions are different in the crossover region. We show that the difference is changed by the gravitational effect. Subject Index: 160, 169, 436","PeriodicalId":49658,"journal":{"name":"Progress of Theoretical Physics","volume":"128 1","pages":"925-939"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1143/PTP.128.925","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTP.128.925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We calculated the chiral condensate and th ed ressed Polyakov loop in the space-time R × S 3 and R × H 3 . The chiral condensate is the order parameter for the chiral phase transition, whereas the dressed Polyakov loop is the order parameter for the deconfinement phase transition. When there is a current mass, critical points for the chiral and deconfinement phase transitions are different in the crossover region. We show that the difference is changed by the gravitational effect. Subject Index: 160, 169, 436
弯曲时空中手性相变与非定义相变的分离
我们计算了时空R × 3s和R × h3中的手性凝聚和应力Polyakov环。手性凝聚是手性相变的序参量,而修饰的Polyakov环是非限定相变的序参量。当存在电流质量时,手性相变和非定义相变的临界点在交叉区域是不同的。我们证明了引力效应改变了差值。学科索引:160、169、436
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress of Theoretical Physics
Progress of Theoretical Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信