Decay Forms of the Time Correlation Functions for Turbulence and Chaos

H. Mori, M. Okamura
{"title":"Decay Forms of the Time Correlation Functions for Turbulence and Chaos","authors":"H. Mori, M. Okamura","doi":"10.1143/PTP.127.615","DOIUrl":null,"url":null,"abstract":"Taking the Rubin model for the one-dimensional Brownian motion and the chaotic Kuramoto-Sivashinsky equation for the one-dimensional turbulence, we derive a generalized Langevin equation in terms of the projection operator formalism, and then investigate the decay forms of the time correlation function Uk(t) and its memory function Γk(t )f or a normal mode uk(t) of the system with a wavenumber k .L etτ (u) k and τ (γ) k be the decay times of Uk(t )a ndΓk(t), respectively, with τ (u) k ≥ τ (γ) k . Here, τ (u) k is a macroscopic time scale if k � 1, but a microscopic time scale if k & 1, whereas τ (γ) k is always a microscopic time scale. Changing the length scale k −1 and the time scales τ (u) k , τ (γ) k , we can obtain various aspects of","PeriodicalId":49658,"journal":{"name":"Progress of Theoretical Physics","volume":"127 1","pages":"615-629"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1143/PTP.127.615","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTP.127.615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Taking the Rubin model for the one-dimensional Brownian motion and the chaotic Kuramoto-Sivashinsky equation for the one-dimensional turbulence, we derive a generalized Langevin equation in terms of the projection operator formalism, and then investigate the decay forms of the time correlation function Uk(t) and its memory function Γk(t )f or a normal mode uk(t) of the system with a wavenumber k .L etτ (u) k and τ (γ) k be the decay times of Uk(t )a ndΓk(t), respectively, with τ (u) k ≥ τ (γ) k . Here, τ (u) k is a macroscopic time scale if k � 1, but a microscopic time scale if k & 1, whereas τ (γ) k is always a microscopic time scale. Changing the length scale k −1 and the time scales τ (u) k , τ (γ) k , we can obtain various aspects of
湍流和混沌时间相关函数的衰减形式
鲁宾一维布朗运动模型和一维湍流的混乱Kuramoto-Sivashinsky方程,我们得到一个广义朗之万方程投影算符的形式主义,然后调查英国时间相关函数的衰减形式(t)和它的记忆功能Γk (t) f或英国正常模式(t)系统的波数k .L etτ(u) k和τ(γ)k是英国的衰变时间(t)和Γk (t),分别τ (u) k≥τ (γ) k。这里,τ (u) k是宏观时间尺度,如果k′1,但如果k & 1,则是微观时间尺度,而τ (γ) k始终是微观时间尺度。改变长度尺度k−1和时间尺度τ (u) k, τ (γ) k,我们可以得到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress of Theoretical Physics
Progress of Theoretical Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信