Non-Equilibrium Critical Relaxation of the 3D Heisenberg Magnets with Long-Range Correlated Disorder

P. Prudnikov, M. Medvedeva
{"title":"Non-Equilibrium Critical Relaxation of the 3D Heisenberg Magnets with Long-Range Correlated Disorder","authors":"P. Prudnikov, M. Medvedeva","doi":"10.1143/PTP.127.369","DOIUrl":null,"url":null,"abstract":"Monte Carlo simulations of the short-time dynamic behavior are reported for three-dimensional Heisenberg model with long-range correlated disorder at criticality, in the case corresponding to linear defects. The static and dynamic critical exponents are determined for systems starting from an ordered initial state. The obtained values of the exponents are in a good agreement with results of the field-theoretic description of the critical behavior of this model in the two-loop approximation.","PeriodicalId":49658,"journal":{"name":"Progress of Theoretical Physics","volume":"127 1","pages":"369-382"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1143/PTP.127.369","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTP.127.369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Monte Carlo simulations of the short-time dynamic behavior are reported for three-dimensional Heisenberg model with long-range correlated disorder at criticality, in the case corresponding to linear defects. The static and dynamic critical exponents are determined for systems starting from an ordered initial state. The obtained values of the exponents are in a good agreement with results of the field-theoretic description of the critical behavior of this model in the two-loop approximation.
具有长程相关无序的三维海森堡磁体的非平衡临界弛豫
本文报道了三维海森堡模型在临界状态下的短时间动力学行为的蒙特卡罗模拟,该模型具有长程相关无序,对应于线性缺陷。确定了从有序初始状态出发的系统的静态和动态临界指数。所得的指数值与双环近似下该模型临界行为的场论描述结果符合得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress of Theoretical Physics
Progress of Theoretical Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信