C. P'epin, D. Chakraborty, M. Grandadam, S. Sarkar
{"title":"Fluctuations and the Higgs Mechanism in Underdoped Cuprates","authors":"C. P'epin, D. Chakraborty, M. Grandadam, S. Sarkar","doi":"10.1146/annurev-conmatphys-031218-013125","DOIUrl":null,"url":null,"abstract":"The physics of the pseudogap phase of high-temperature cuprate superconductors has been an enduring mystery over the past 30 years. The ubiquitous presence of the pseudogap phase in underdoped cuprates suggests that understanding it is key to unraveling the origin of high-temperature superconductivity. We review various theoretical approaches to this problem, emphasizing the concept of emergent symmetries in the underdoped region of those compounds. We differentiate these theories by considering a few fundamental questions related to the rich phenomenology of these materials. Lastly, we discuss a recent idea regarding two kinds of entangled preformed pairs that open a gap at the pseudogap onset temperature, T*, through a specific Higgs mechanism. We review the experimental consequences of this line of thought.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031218-013125","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-031218-013125","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 9
Abstract
The physics of the pseudogap phase of high-temperature cuprate superconductors has been an enduring mystery over the past 30 years. The ubiquitous presence of the pseudogap phase in underdoped cuprates suggests that understanding it is key to unraveling the origin of high-temperature superconductivity. We review various theoretical approaches to this problem, emphasizing the concept of emergent symmetries in the underdoped region of those compounds. We differentiate these theories by considering a few fundamental questions related to the rich phenomenology of these materials. Lastly, we discuss a recent idea regarding two kinds of entangled preformed pairs that open a gap at the pseudogap onset temperature, T*, through a specific Higgs mechanism. We review the experimental consequences of this line of thought.
期刊介绍:
Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.