Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System

María Abreu-Sepúlveda, N. Harun, Gregory A. Hackett, A. Hagen, D. Tucker
{"title":"Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System","authors":"María Abreu-Sepúlveda, N. Harun, Gregory A. Hackett, A. Hagen, D. Tucker","doi":"10.1115/1.4028953","DOIUrl":null,"url":null,"abstract":"The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing hardware-in-the-loop simulation. To assess the long-term stability of the SOFC part of the system, electrochemical degradation due to operating conditions such as current density and fuel utilization have been incorporated into the SOFC model and successfully recreated in real time. The mathematical expression for degradation rate was obtained through the analysis of empirical voltage versus time plots for different current densities and fuel utilizations.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021001"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4028953","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4028953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing hardware-in-the-loop simulation. To assess the long-term stability of the SOFC part of the system, electrochemical degradation due to operating conditions such as current density and fuel utilization have been incorporated into the SOFC model and successfully recreated in real time. The mathematical expression for degradation rate was obtained through the analysis of empirical voltage versus time plots for different current densities and fuel utilizations.
燃料电池-燃气轮机混合动力系统硬件在环加速退化仿真
美国能源部(DOE)-位于worgantown的国家能源技术实验室(NETL)开发了混合性能(HyPer)项目,其中固体氧化物燃料电池(SOFC)一维(1D)实时运行模型通过硬件在环仿真与燃气轮机硬件系统相耦合。为了评估系统SOFC部分的长期稳定性,将电流密度和燃料利用率等操作条件导致的电化学降解纳入SOFC模型,并成功地实时重现了SOFC模型。通过对不同电流密度和燃料利用率下的经验电压随时间曲线的分析,得到了降解率的数学表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信