{"title":"Evaluation of Cutting Fluid With Nanoinclusions","authors":"M. Amrita, R. Srikant, AV Sitaramaraju","doi":"10.1115/1.4026843","DOIUrl":null,"url":null,"abstract":"Environmental and economic concerns on use of cutting fluids have led to use of minimum quantity cooling lubrication (MQCL) system, which uses minute quantity of cutting fluids, demanding a specialized fluid with improved properties. Investigation of any newly developed cutting fluid would be complete if it is evaluated with respect to its machinability, environmental and economic aspects. The present work investigates the viscosity, machinability characteristics, environmental effects, and economic aspects of a newly developed nanocutting fluid with varying concentrations of graphite nanoparticles applied at different flow rates to machining operation. It is found that the machinability improved with respect to conventional cutting fluid and this improvement increased with increase in concentration of nanoinclusions in the range 0.1–0.5 wt. % and also with increase in the flow rate. A regression model is developed for nanocutting fluids to estimate tool wear when used in the range 0.1–0.5 wt. % at flow rates 5 ml/min to 15 ml/min. The biodegradability is found to decrease with inclusion of nanoparticles due to the inorganic nature of selected nanoparticle. But its application as MQCL is ecofriendly as the nanocutting fluid is not disposed to the environment and graphite in it is neither toxic nor hazardous. Based on economic aspect, MQCL application with conventional cutting fluid and few cases of nanocutting fluids are found to be economic compared to flood lubrication. So a compromise has to be obtained between the economic and machinability aspects to choose an optimum cutting fluid.","PeriodicalId":73845,"journal":{"name":"Journal of nanotechnology in engineering and medicine","volume":"4 1","pages":"031007"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4026843","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology in engineering and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4026843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Environmental and economic concerns on use of cutting fluids have led to use of minimum quantity cooling lubrication (MQCL) system, which uses minute quantity of cutting fluids, demanding a specialized fluid with improved properties. Investigation of any newly developed cutting fluid would be complete if it is evaluated with respect to its machinability, environmental and economic aspects. The present work investigates the viscosity, machinability characteristics, environmental effects, and economic aspects of a newly developed nanocutting fluid with varying concentrations of graphite nanoparticles applied at different flow rates to machining operation. It is found that the machinability improved with respect to conventional cutting fluid and this improvement increased with increase in concentration of nanoinclusions in the range 0.1–0.5 wt. % and also with increase in the flow rate. A regression model is developed for nanocutting fluids to estimate tool wear when used in the range 0.1–0.5 wt. % at flow rates 5 ml/min to 15 ml/min. The biodegradability is found to decrease with inclusion of nanoparticles due to the inorganic nature of selected nanoparticle. But its application as MQCL is ecofriendly as the nanocutting fluid is not disposed to the environment and graphite in it is neither toxic nor hazardous. Based on economic aspect, MQCL application with conventional cutting fluid and few cases of nanocutting fluids are found to be economic compared to flood lubrication. So a compromise has to be obtained between the economic and machinability aspects to choose an optimum cutting fluid.