{"title":"Investigation of Mechanical Behavior of Membrane in Polymer Electrolyte Fuel Cells Subject to Dynamic Load Changes","authors":"A. Verma, R. Pitchumani","doi":"10.1115/1.4026551","DOIUrl":null,"url":null,"abstract":"One of the major barriers for polymer electrolyte membrane (PEM) fuel cells to be commercially viable for stationary and transportation applications is the durability of membranes undergoing chemical and mechanical degradation over the period of operation. Toward understanding the effects of operating parameters on membrane durability, this paper presents numerical simulations for a single channel PEM fuel cell undergoing changes in load, by subjecting a unit cell to step changes in voltage. The objective is to elucidate the mechanical response of the membrane, which is subjected to hygral (water) loading and unloading cycles at constant temperature. Detailed three-dimensional (3D) computational fluid dynamics (CFD) simulations are conducted, taking into account the complex interactions of water transport dynamics and load changes, to accurately capture the water content in the membrane with changes in cell voltage. The water content obtained through CFD simulations is, in turn, used to carry out two-dimensional (2D) finite element (FE) analysis to predict the mechanical response of the membrane undergoing cyclic change in water content, as the operating voltage is cycled. The effects of cyclic changes in cell potential on the stresses induced, amount of plastic strain, and its localization are analyzed for various inlet cathode humidity values for two sections along the length of the fuel cell.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"11 1","pages":"031009"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4026551","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4026551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
One of the major barriers for polymer electrolyte membrane (PEM) fuel cells to be commercially viable for stationary and transportation applications is the durability of membranes undergoing chemical and mechanical degradation over the period of operation. Toward understanding the effects of operating parameters on membrane durability, this paper presents numerical simulations for a single channel PEM fuel cell undergoing changes in load, by subjecting a unit cell to step changes in voltage. The objective is to elucidate the mechanical response of the membrane, which is subjected to hygral (water) loading and unloading cycles at constant temperature. Detailed three-dimensional (3D) computational fluid dynamics (CFD) simulations are conducted, taking into account the complex interactions of water transport dynamics and load changes, to accurately capture the water content in the membrane with changes in cell voltage. The water content obtained through CFD simulations is, in turn, used to carry out two-dimensional (2D) finite element (FE) analysis to predict the mechanical response of the membrane undergoing cyclic change in water content, as the operating voltage is cycled. The effects of cyclic changes in cell potential on the stresses induced, amount of plastic strain, and its localization are analyzed for various inlet cathode humidity values for two sections along the length of the fuel cell.
期刊介绍:
The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.