{"title":"A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds","authors":"Florent Ygouf","doi":"10.1112/topo.12279","DOIUrl":null,"url":null,"abstract":"We define on any affine invariant orbifold M$\\mathcal {M}$ a foliation FM$\\mathcal {F}^{\\mathcal {M}}$ that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of FM$\\mathcal {F}^{\\mathcal {M}}$ when M$\\mathcal {M}$ is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum H(2,1,1)$\\mathcal {H}(2,1,1)$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/topo.12279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We define on any affine invariant orbifold M$\mathcal {M}$ a foliation FM$\mathcal {F}^{\mathcal {M}}$ that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of FM$\mathcal {F}^{\mathcal {M}}$ when M$\mathcal {M}$ is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum H(2,1,1)$\mathcal {H}(2,1,1)$ .