Pei Wang, Yao Chen, Jinhu Lü, Qingyun Wang, Xinghuo Yu
{"title":"Graphical Features of Functional Genes in Human Protein Interaction Network.","authors":"Pei Wang, Yao Chen, Jinhu Lü, Qingyun Wang, Xinghuo Yu","doi":"10.1109/TBCAS.2015.2487299","DOIUrl":null,"url":null,"abstract":"With the completion of the human genome project, it is feasible to investigate large-scale human protein interaction network (HPIN) with complex networks theory. Proteins are encoded by genes. Essential, viable, disease, conserved, housekeeping (HK) and tissue-enriched (TE) genes are functional genes, which are organized and functioned via interaction networks. Based on up-to-date data from various databases or literature, two large-scale HPINs and six subnetworks are constructed. We illustrate that the HPINs and most of the subnetworks are sparse, small-world, scale-free, disassortative and with hierarchical modularity. Among the six subnetworks, essential, disease and HK subnetworks are more densely connected than the others. Statistical analysis on the topological structures of the HPIN reveals that the lethal, the conserved, the HK and the TE genes are with hallmark graphical features. Receiver operating characteristic (ROC) curves indicate that the essential genes can be distinguished from the viable ones with accuracy as high as almost 70%. Closeness, semi-local and eigenvector centralities can distinguish the HK genes from the TE ones with accuracy around 82%. Furthermore, the Venn diagram, cluster dendgrams and classifications of disease genes reveal that some classes of disease genes are with hallmark graphical features, especially for cancer genes, HK disease genes and TE disease genes. The findings facilitate the identification of some functional genes via topological structures. The investigations shed some light on the characteristics of the compete interactome, which have potential implications in networked medicine and biological network control.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2487299","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2487299","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 8
Abstract
With the completion of the human genome project, it is feasible to investigate large-scale human protein interaction network (HPIN) with complex networks theory. Proteins are encoded by genes. Essential, viable, disease, conserved, housekeeping (HK) and tissue-enriched (TE) genes are functional genes, which are organized and functioned via interaction networks. Based on up-to-date data from various databases or literature, two large-scale HPINs and six subnetworks are constructed. We illustrate that the HPINs and most of the subnetworks are sparse, small-world, scale-free, disassortative and with hierarchical modularity. Among the six subnetworks, essential, disease and HK subnetworks are more densely connected than the others. Statistical analysis on the topological structures of the HPIN reveals that the lethal, the conserved, the HK and the TE genes are with hallmark graphical features. Receiver operating characteristic (ROC) curves indicate that the essential genes can be distinguished from the viable ones with accuracy as high as almost 70%. Closeness, semi-local and eigenvector centralities can distinguish the HK genes from the TE ones with accuracy around 82%. Furthermore, the Venn diagram, cluster dendgrams and classifications of disease genes reveal that some classes of disease genes are with hallmark graphical features, especially for cancer genes, HK disease genes and TE disease genes. The findings facilitate the identification of some functional genes via topological structures. The investigations shed some light on the characteristics of the compete interactome, which have potential implications in networked medicine and biological network control.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.