Huijie Qiao, A. Townsend Peterson, Lindsay P. Campbell, Jorge Soberón, Liqiang Ji, Luis E. Escobar
{"title":"NicheA: creating virtual species and ecological niches in multivariate environmental scenarios","authors":"Huijie Qiao, A. Townsend Peterson, Lindsay P. Campbell, Jorge Soberón, Liqiang Ji, Luis E. Escobar","doi":"10.1111/ecog.01961","DOIUrl":null,"url":null,"abstract":"<p>Robust methods by which to generate virtual species are needed urgently in the emerging field of distributional ecology to evaluate performance of techniques for modeling ecological niches and species distributions and to generate new questions in biogeography. Virtual species provide the opportunity to test hypotheses and methods based on known and unbiased distributions. We present Niche Analyst (NicheA), a toolkit developed to generate virtual species following the Hutchinsonian approach of an <i>n</i>-multidimensional space occupied by the species. Ecological niche models are generated, analyzed, and visualized in an environmental space, and then projected to the geographic space in the form of continuous or binary species distribution models. NicheA is implemented in a stable and user-friendly Java platform. The software, online manual, and user support are freely available at < http://nichea.sourceforge.net >.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"39 8","pages":"805-813"},"PeriodicalIF":5.4000,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ecog.01961","citationCount":"144","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.01961","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 144
Abstract
Robust methods by which to generate virtual species are needed urgently in the emerging field of distributional ecology to evaluate performance of techniques for modeling ecological niches and species distributions and to generate new questions in biogeography. Virtual species provide the opportunity to test hypotheses and methods based on known and unbiased distributions. We present Niche Analyst (NicheA), a toolkit developed to generate virtual species following the Hutchinsonian approach of an n-multidimensional space occupied by the species. Ecological niche models are generated, analyzed, and visualized in an environmental space, and then projected to the geographic space in the form of continuous or binary species distribution models. NicheA is implemented in a stable and user-friendly Java platform. The software, online manual, and user support are freely available at < http://nichea.sourceforge.net >.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.