New Constructions of q-Ary MDS Array Codes With Multiple Parities and Their Effective Decoding

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingjie Lv;Weijun Fang;Xiangyu Chen;Jing Yang;Shu-Tao Xia
{"title":"New Constructions of q-Ary MDS Array Codes With Multiple Parities and Their Effective Decoding","authors":"Jingjie Lv;Weijun Fang;Xiangyu Chen;Jing Yang;Shu-Tao Xia","doi":"10.1109/TIT.2023.3300919","DOIUrl":null,"url":null,"abstract":"From the perspective of parity-check matrices, we present new constructions of \n<inline-formula> <tex-math>$q$ </tex-math></inline-formula>\n-ary maximum distance separable (MDS) array codes with multiple parities. Applying these constructions, some new types of MDS array codes with array numbers \n<inline-formula> <tex-math>$m-\\tau $ </tex-math></inline-formula>\n can be derived, where \n<inline-formula> <tex-math>${\\mathrm{ gcd}}(m,q)=1$ </tex-math></inline-formula>\n. Moreover, an explicit construction of binary MDS array codes is also presented. Compared to the existing MDS array codes, one important characteristic of these codes is that their available code lengths are much longer, which is suitable for large-scale storage systems. In some particular cases, the maximum code lengths of these codes and their extension can be up to \n<inline-formula> <tex-math>$2^{m-\\tau }$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$2^{m-\\tau }+1$ </tex-math></inline-formula>\n (or \n<inline-formula> <tex-math>$2^{m-\\tau }+2$ </tex-math></inline-formula>\n), respectively. Moreover, to demonstrate the applicability of our constructed MDS array codes, we present an effective generic decoding method for the erased errors. In particular, when there are no more than three erasures occurring, a scheduled algorithm for the syndrome computation of our explicit construction is further proposed, whose computational complexity is asymptotically optimal. Furthermore, this algorithm can be directly applied to the encoding procedure of their extended form. The simulation shows that our new MDS array codes have better encoding and decoding performances than the corresponding extended RS codes coupled with different algorithms.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"69 11","pages":"7082-7098"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10198890/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

From the perspective of parity-check matrices, we present new constructions of $q$ -ary maximum distance separable (MDS) array codes with multiple parities. Applying these constructions, some new types of MDS array codes with array numbers $m-\tau $ can be derived, where ${\mathrm{ gcd}}(m,q)=1$ . Moreover, an explicit construction of binary MDS array codes is also presented. Compared to the existing MDS array codes, one important characteristic of these codes is that their available code lengths are much longer, which is suitable for large-scale storage systems. In some particular cases, the maximum code lengths of these codes and their extension can be up to $2^{m-\tau }$ and $2^{m-\tau }+1$ (or $2^{m-\tau }+2$ ), respectively. Moreover, to demonstrate the applicability of our constructed MDS array codes, we present an effective generic decoding method for the erased errors. In particular, when there are no more than three erasures occurring, a scheduled algorithm for the syndrome computation of our explicit construction is further proposed, whose computational complexity is asymptotically optimal. Furthermore, this algorithm can be directly applied to the encoding procedure of their extended form. The simulation shows that our new MDS array codes have better encoding and decoding performances than the corresponding extended RS codes coupled with different algorithms.
多重奇偶校验q元MDS阵列码的新构造及其有效译码
从奇偶校验矩阵的角度出发,我们提出了具有多奇偶性的$q$ary最大距离可分离(MDS)阵列码的新构造。应用这些构造,可以导出一些新类型的阵列号为$m-\tau$的MDS阵列码,其中${\mathrm{gcd}}(m,q)=1$。此外,还提出了二进制MDS阵列码的显式构造。与现有的MDS阵列码相比,这些码的一个重要特征是其可用的码长要长得多,这适用于大型存储系统。在某些特定情况下,这些代码及其扩展的最大代码长度可以分别高达$2^{m-\tau}$和$2^{m-\tau}+1$(或$2^{m-\tau}+2$)。此外,为了证明我们构建的MDS阵列码的适用性,我们提出了一种有效的通用解码方法来消除错误。特别地,当不超过三个擦除发生时,进一步提出了一种用于显式结构的综合症计算的调度算法,其计算复杂度是渐近最优的。此外,该算法可以直接应用于其扩展形式的编码过程。仿真表明,与相应的扩展RS码结合不同的算法相比,我们新的MDS阵列码具有更好的编解码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信