Bernard Herrera;Pietro Simeoni;Gabriel Giribaldi;Luca Colombo;Matteo Rinaldi
{"title":"Scandium-Doped Aluminum Nitride PMUT Arrays for Wireless Ultrasonic Powering of Implantables","authors":"Bernard Herrera;Pietro Simeoni;Gabriel Giribaldi;Luca Colombo;Matteo Rinaldi","doi":"10.1109/OJUFFC.2022.3221708","DOIUrl":null,"url":null,"abstract":"The present work reports on the novel usage of Scandium-doped Aluminum Nitride (AlScN) PMUT arrays for enhanced power transfer in implantable applications. Optimization considerations were explored for the PMUT array towards high performance. The transmission metric, compared to identical arrays based on Aluminum Nitride (AlN), showed a 25dB increase. Power transfer measurements also confirmed a considerable increase as compared to previous work based on AlN. Different matching strategies were explored to maximize the output power including inductor conjugate matching and matching utilizing resonators in series and parallel topologies. A full characterization of the transferred power versus incident acoustic intensity on the array revealed transmission of power levels of several milliwatts for intensities below the Food and Drug Administration’s (FDA) limit. The performance of the array, as compared with other implementations with a range of frequencies, dimensions and input acoustic intensities was bench-marked through the use of the conversion efficiency as the figure-of-merit. The practical applicability of the system, utilizing a realistic tissue phantom as the medium, was proven by interfacing with a commercially available boost converter to obtain a rectified voltage and power levels sufficient for powering and charging intra-body electronics.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"2 ","pages":"250-260"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9956971","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9956971/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The present work reports on the novel usage of Scandium-doped Aluminum Nitride (AlScN) PMUT arrays for enhanced power transfer in implantable applications. Optimization considerations were explored for the PMUT array towards high performance. The transmission metric, compared to identical arrays based on Aluminum Nitride (AlN), showed a 25dB increase. Power transfer measurements also confirmed a considerable increase as compared to previous work based on AlN. Different matching strategies were explored to maximize the output power including inductor conjugate matching and matching utilizing resonators in series and parallel topologies. A full characterization of the transferred power versus incident acoustic intensity on the array revealed transmission of power levels of several milliwatts for intensities below the Food and Drug Administration’s (FDA) limit. The performance of the array, as compared with other implementations with a range of frequencies, dimensions and input acoustic intensities was bench-marked through the use of the conversion efficiency as the figure-of-merit. The practical applicability of the system, utilizing a realistic tissue phantom as the medium, was proven by interfacing with a commercially available boost converter to obtain a rectified voltage and power levels sufficient for powering and charging intra-body electronics.