Wenda Zhao, Xueqing Hou, Xiaobing Yu, You He, Huchuan Lu
{"title":"Towards weakly-supervised focus region detection via recurrent constraint network.","authors":"Wenda Zhao, Xueqing Hou, Xiaobing Yu, You He, Huchuan Lu","doi":"10.1109/TIP.2019.2942505","DOIUrl":null,"url":null,"abstract":"<p><p>Recent state-of-the-art methods on focus region detection (FRD) rely on deep convolutional networks trained with costly pixel-level annotations. In this study, we propose a FRD method that achieves competitive accuracies but only uses easily obtained bounding box annotations. Box-level tags provide important cues of focus regions but lose the boundary delineation of the transition area. A recurrent constraint network (RCN) is introduced for this challenge. In our static training, RCN is jointly trained with a fully convolutional network (FCN) through box-level supervision. The RCN can generate a detailed focus map to locate the boundary of the transition area effectively. In our dynamic training, we iterate between fine-tuning FCN and RCN with the generated pixel-level tags and generate finer new pixel-level tags. To boost the performance further, a guided conditional random field is developed to improve the quality of the generated pixel-level tags. To promote further study of the weakly supervised FRD methods, we construct a new dataset called FocusBox, which consists of 5000 challenging images with bounding box-level labels. Experimental results on existing datasets demonstrate that our method not only yields comparable results than fully supervised counterparts but also achieves a faster speed.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2942505","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent state-of-the-art methods on focus region detection (FRD) rely on deep convolutional networks trained with costly pixel-level annotations. In this study, we propose a FRD method that achieves competitive accuracies but only uses easily obtained bounding box annotations. Box-level tags provide important cues of focus regions but lose the boundary delineation of the transition area. A recurrent constraint network (RCN) is introduced for this challenge. In our static training, RCN is jointly trained with a fully convolutional network (FCN) through box-level supervision. The RCN can generate a detailed focus map to locate the boundary of the transition area effectively. In our dynamic training, we iterate between fine-tuning FCN and RCN with the generated pixel-level tags and generate finer new pixel-level tags. To boost the performance further, a guided conditional random field is developed to improve the quality of the generated pixel-level tags. To promote further study of the weakly supervised FRD methods, we construct a new dataset called FocusBox, which consists of 5000 challenging images with bounding box-level labels. Experimental results on existing datasets demonstrate that our method not only yields comparable results than fully supervised counterparts but also achieves a faster speed.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.