Xianjing Han, Xuemeng Song, Yiyang Yao, Xin-Shun Xu, Liqiang Nie
{"title":"Neural Compatibility Modeling with Probabilistic Knowledge Distillation.","authors":"Xianjing Han, Xuemeng Song, Yiyang Yao, Xin-Shun Xu, Liqiang Nie","doi":"10.1109/TIP.2019.2936742","DOIUrl":null,"url":null,"abstract":"<p><p>In modern society, clothing matching plays a pivotal role in people's daily life, as suitable outfits can beautify their appearance directly. Nevertheless, how to make a suitable outfit has become a daily headache for many people, especially those who do not have much sense of aesthetics. In the light of this, many research efforts have been dedicated to the task of complementary clothing matching and have achieved great success relying on the advanced data-driven neural networks. However, most existing methods overlook the rich valuable knowledge accumulated by our human beings in the fashion domain, especially the rules regarding clothing matching, like \"coats go with dresses\" and \"silk tops cannot go with chiffon bottoms\". Towards this end, in this work, we propose a knowledge-guided neural compatibility modeling scheme, which is able to incorporate the rich fashion domain knowledge to enhance the performance of the compatibility modeling in the context of clothing matching. To better integrate the huge and implicit fashion domain knowledge into the data-driven neural networks, we present a probabilistic knowledge distillation (PKD) method, which is able to encode vast knowledge rules in a probabilistic manner. Extensive experiments on two real-world datasets have verified the guidance of rules from different sources and demonstrated the effectiveness and portability of our model. As a byproduct, we released the codes and involved parameters to benefit the research community.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2936742","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In modern society, clothing matching plays a pivotal role in people's daily life, as suitable outfits can beautify their appearance directly. Nevertheless, how to make a suitable outfit has become a daily headache for many people, especially those who do not have much sense of aesthetics. In the light of this, many research efforts have been dedicated to the task of complementary clothing matching and have achieved great success relying on the advanced data-driven neural networks. However, most existing methods overlook the rich valuable knowledge accumulated by our human beings in the fashion domain, especially the rules regarding clothing matching, like "coats go with dresses" and "silk tops cannot go with chiffon bottoms". Towards this end, in this work, we propose a knowledge-guided neural compatibility modeling scheme, which is able to incorporate the rich fashion domain knowledge to enhance the performance of the compatibility modeling in the context of clothing matching. To better integrate the huge and implicit fashion domain knowledge into the data-driven neural networks, we present a probabilistic knowledge distillation (PKD) method, which is able to encode vast knowledge rules in a probabilistic manner. Extensive experiments on two real-world datasets have verified the guidance of rules from different sources and demonstrated the effectiveness and portability of our model. As a byproduct, we released the codes and involved parameters to benefit the research community.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.