Shuai Gu, Junhui Hou, Huanqiang Zeng, Hui Yuan, Kai-Kuang Ma
{"title":"3D Point Cloud Attribute Compression Using Geometry-Guided Sparse Representation.","authors":"Shuai Gu, Junhui Hou, Huanqiang Zeng, Hui Yuan, Kai-Kuang Ma","doi":"10.1109/TIP.2019.2936738","DOIUrl":null,"url":null,"abstract":"<p><p>3D point clouds associated with attributes are considered as a promising paradigm for immersive communication. However, the corresponding compression schemes for this media are still in the infant stage. Moreover, in contrast to conventional image/video compression, it is a more challenging task to compress 3D point cloud data, arising from the irregular structure. In this paper, we propose a novel and effective compression scheme for the attributes of voxelized 3D point clouds. In the first stage, an input voxelized 3D point cloud is divided into blocks of equal size. Then, to deal with the irregular structure of 3D point clouds, a geometry-guided sparse representation (GSR) is proposed to eliminate the redundancy within each block, which is formulated as an ℓ0-norm regularized optimization problem. Also, an inter-block prediction scheme is applied to remove the redundancy between blocks. Finally, by quantitatively analyzing the characteristics of the resulting transform coefficients by GSR, an effective entropy coding strategy that is tailored to our GSR is developed to generate the bitstream. Experimental results over various benchmark datasets show that the proposed compression scheme is able to achieve better rate-distortion performance and visual quality, compared with state-of-the-art methods.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2936738","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
3D point clouds associated with attributes are considered as a promising paradigm for immersive communication. However, the corresponding compression schemes for this media are still in the infant stage. Moreover, in contrast to conventional image/video compression, it is a more challenging task to compress 3D point cloud data, arising from the irregular structure. In this paper, we propose a novel and effective compression scheme for the attributes of voxelized 3D point clouds. In the first stage, an input voxelized 3D point cloud is divided into blocks of equal size. Then, to deal with the irregular structure of 3D point clouds, a geometry-guided sparse representation (GSR) is proposed to eliminate the redundancy within each block, which is formulated as an ℓ0-norm regularized optimization problem. Also, an inter-block prediction scheme is applied to remove the redundancy between blocks. Finally, by quantitatively analyzing the characteristics of the resulting transform coefficients by GSR, an effective entropy coding strategy that is tailored to our GSR is developed to generate the bitstream. Experimental results over various benchmark datasets show that the proposed compression scheme is able to achieve better rate-distortion performance and visual quality, compared with state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.