Multi-Task Deep Relative Attribute Learning for Visual Urban Perception.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weiqing Min, Shuhuan Mei, Linhu Liu, Yi Wang, Shuqiang Jiang
{"title":"Multi-Task Deep Relative Attribute Learning for Visual Urban Perception.","authors":"Weiqing Min, Shuhuan Mei, Linhu Liu, Yi Wang, Shuqiang Jiang","doi":"10.1109/TIP.2019.2932502","DOIUrl":null,"url":null,"abstract":"<p><p>Visual urban perception aims to quantify perceptual attributes (e.g., safe and depressing attributes) of physical urban environment from crowd-sourced street-view images and their pairwise comparisons. It has been receiving more and more attention in computer vision for various applications, such as perceptive attribute learning and urban scene understanding. Most existing methods adopt either (i) a regression model trained using image features and ranked scores converted from pairwise comparisons for perceptual attribute prediction or (ii) a pairwise ranking algorithm to independently learn each perceptual attribute. However, the former fails to directly exploit pairwise comparisons while the latter ignores the relationship among different attributes. To address them, we propose a Multi-Task Deep Relative Attribute Learning Network (MTDRALN) to learn all the relative attributes simultaneously via multi-task Siamese networks, where each Siamese network will predict one relative attribute. Combined with deep relative attribute learning, we utilize the structured sparsity to exploit the prior from natural attribute grouping, where all the attributes are divided into different groups based on semantic relatedness in advance. As a result, MTDRALN is capable of learning all the perceptual attributes simultaneously via multi-task learning. Besides the ranking sub-network, MTDRALN further introduces the classification sub-network, and these two types of losses from two sub-networks jointly constrain parameters of the deep network to make the network learn more discriminative visual features for relative attribute learning. In addition, our network can be trained in an end-to-end way to make deep feature learning and multi-task relative attribute learning reinforce each other. Extensive experiments on the large-scale Place Pulse 2.0 dataset validate the advantage of our proposed network. Our qualitative results along with visualization of saliency maps also show that the proposed network is able to learn effective features for perceptual attributes.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2932502","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Visual urban perception aims to quantify perceptual attributes (e.g., safe and depressing attributes) of physical urban environment from crowd-sourced street-view images and their pairwise comparisons. It has been receiving more and more attention in computer vision for various applications, such as perceptive attribute learning and urban scene understanding. Most existing methods adopt either (i) a regression model trained using image features and ranked scores converted from pairwise comparisons for perceptual attribute prediction or (ii) a pairwise ranking algorithm to independently learn each perceptual attribute. However, the former fails to directly exploit pairwise comparisons while the latter ignores the relationship among different attributes. To address them, we propose a Multi-Task Deep Relative Attribute Learning Network (MTDRALN) to learn all the relative attributes simultaneously via multi-task Siamese networks, where each Siamese network will predict one relative attribute. Combined with deep relative attribute learning, we utilize the structured sparsity to exploit the prior from natural attribute grouping, where all the attributes are divided into different groups based on semantic relatedness in advance. As a result, MTDRALN is capable of learning all the perceptual attributes simultaneously via multi-task learning. Besides the ranking sub-network, MTDRALN further introduces the classification sub-network, and these two types of losses from two sub-networks jointly constrain parameters of the deep network to make the network learn more discriminative visual features for relative attribute learning. In addition, our network can be trained in an end-to-end way to make deep feature learning and multi-task relative attribute learning reinforce each other. Extensive experiments on the large-scale Place Pulse 2.0 dataset validate the advantage of our proposed network. Our qualitative results along with visualization of saliency maps also show that the proposed network is able to learn effective features for perceptual attributes.

针对城市视觉感知的多任务深度相对属性学习
视觉城市感知旨在从人群来源的街景图像及其成对比较中量化城市物理环境的感知属性(如安全和压抑属性)。它在计算机视觉领域的各种应用中受到越来越多的关注,如感知属性学习和城市场景理解。大多数现有方法都采用(i)使用图像特征和成对比较转换的排序分数训练的回归模型进行感知属性预测,或(ii)采用成对排序算法独立学习每个感知属性。然而,前者无法直接利用成对比较,而后者则忽略了不同属性之间的关系。为了解决这些问题,我们提出了多任务深度相对属性学习网络(MTDRALN),通过多任务连体网络同时学习所有相对属性,每个连体网络预测一个相对属性。结合深度相对属性学习,我们利用结构稀疏性来利用自然属性分组的先验性,即根据语义相关性预先将所有属性分成不同的组。因此,MTDRALN 能够通过多任务学习同时学习所有感知属性。除了排序子网络外,MTDRALN 还进一步引入了分类子网络,这两种子网络的损失共同约束了深度网络的参数,使网络能够学习到更多具有区分性的视觉特征,从而实现相对属性学习。此外,我们的网络可以端到端方式进行训练,使深度特征学习和多任务相对属性学习相互促进。在大规模 Place Pulse 2.0 数据集上进行的大量实验验证了我们提出的网络的优势。我们的定性结果以及可视化的显著性地图也表明,所提出的网络能够学习有效的感知属性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信